首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   10篇
  国内免费   4篇
测绘学   5篇
大气科学   4篇
地球物理   85篇
地质学   93篇
海洋学   58篇
自然地理   9篇
  2022年   2篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   7篇
  2016年   4篇
  2015年   6篇
  2014年   4篇
  2013年   15篇
  2012年   3篇
  2011年   11篇
  2010年   9篇
  2009年   13篇
  2008年   31篇
  2007年   48篇
  2006年   29篇
  2005年   18篇
  2004年   1篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   12篇
  1993年   2篇
  1992年   1篇
  1991年   8篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有254条查询结果,搜索用时 31 毫秒
131.
Tsunamis are unpredictable, catastrophic events, and so present enormous difficulties for direct studies in the field or laboratory. However, their sedimentary deposits yield evidence of a wide variety of hydrodynamic conditions caused by flow transformations on a spatial and temporal scale. Tsunami deposits ranging from the Miocene to modern times identified at different localities along the Chilean coast are described to provide a database of their characteristics. Among the typical features associated with tsunami deposits are well-rounded megaclasts eroded from coastal alluvial fans or beaches by very dense, competent flows. Sand injections from the base of these flows into the substrate indicate very high dynamic pressures, whereas basal shear carpets suggest hyperconcentrated, highly sheared flows. Turbulence develops in front of advancing debris flows, as indicated by megaflutes at the base of scoured channels.  相似文献   
132.
介绍了运用新一代中分辨率小卫星数据———英国灾害监测小卫星(DMC,DisasterMonitoringConstellation)数据源,以印度尼西亚亚齐省为例,采用遥感数据作为信息源,对2004-12-26印尼苏门答腊岛西北海域发生的里氏9·0级的强烈地震所引发的印度洋海啸灾害进行了监测评估。所获得的小卫星图像预处理后,通过对图像中受损失地物的光谱信息分析、受损失信息与环境背景信息的对比分析,进而建立其判读标志;并在此基础上进行损失程度分级判读、统计分析等,实现了从小卫星图像上对海啸灾情损失的遥感快速监测评估。其监测评估结果为中国开展国际援助提供了客观依据,其技术方法为海啸灾害及其它灾害的遥感快速监测评价提供了技术思路,也为中国即将发射运行的灾害和环境监测预报小卫星星座及中国DMC小卫星的应用提供必要的经验及技术支持。  相似文献   
133.
根据美国西北大学地质科学系Seth Stein和Emile Okal最近在全球地震联合会(IRIS)网站公布的计算结果,2004年12月26日印度尼西亚苏门达腊地震震级为Mw9.3,使该地震成为有地震仪器观测史以来的排列第2的大地震(排列第一的是1960年智利MW9.5地震)。  相似文献   
134.
The Alaska Tsunami Warning Center has the responsibility of providing timely tsunami warning services for Alaska and the west coasts of Canada and the United States. Recently, the ATWC implemented a new microcomputer system which is used for both automatic and interactive earthquake processing, and for disseminating critical information to the Tsunami Warning System recipients.Real-time seismic wave form data from 23 short-period and 9 long-period sites in Alaska, the lower 48 States, and Hawaii, are continually computer-monitored for the occurrence of an earthquake. Once detected from the short-period wave form data, pre- and post-earthquake data are displayed on a graphics terminal along with an indicator to identify the time of the onset of theP waves (P-picks). TheP-picks can easily be changed during or after data collection via a mouse. Magnitudes (M b ,M l ,M B ,M S ) are automatically computed from appropriate short- and long-period wave form data concurrently with the above processing. A second graphics terminal displays cycle-by-cycle long-period wave form data that was used to compute an earthquake'sM B andM S magnitudes.An earthquake's parametric data and other information are available and printed within tens of seconds after theP wave arrivals are recorded at the first 5 sites, then 7 sites, 9 sites, and a final parametric computation using all collected data. Three video display monitors are used for displaying the parameters, procedural aids, and a map showing the epicenter. Additionally, selected event parameters are immediately transmitted by VHF radio to alphanumeric beepers which are carried by standby duty personnel during those times that the Center is not manned.Using a dedicated video display terminal and printer, the interactive system can use data and parameters resulting from the automatic processes for concurrent parameter recomputations; perform additional computations; disseminate critical information; and generate procedural aids for duty geophysicists to facilitate an earthquake/tsunami investigation.  相似文献   
135.
By carrying out the hydraulic experiments in a one-dimensional open channel and two-dimensional basin, we clarified the process of how a landslide on a uniform slope causes the generation of a tsunami. The effect of the interactive force that occurs between the debris flow layer and the tsunami is significant in the generation of a tsunami. The continuous flow of the debris into the water makes the wave period of the tsunami short. The present experiments apply numerical simulation using the two-layer model with shear stress models on the bottom and interface, and the results are compared. The simulated debris flow shows good agreement with the measured results and ensures the rushing process into the water. We propose that the model use a Manning coefficient of 0.01 for the smooth slope and 0.015 for the rough slope, and a horizontal viscosity of 0.01 m2/s for the landslide; an interactive force of 0.2 for each layer is recommended. The dispersion effect should be included in the numerical model for the propagation from the shore.  相似文献   
136.
On the 30th of December 2002 two tsunamis were generated only 7 min apart in Stromboli, southern Tyrrhenian Sea, Italy. They represented the peak of a volcanic crisis that started 2 days before with a large emission of lava flows from a lateral vent that opened some hundreds of meters below the summit craters. Both tsunamis were produced by landslides that detached from the Sciara del Fuoco. This is a morphological scar and is the result of the last collapse of the northwestern flank of the volcanic edifice, that occurred less than 5 ka b.p. The first tsunami was due to a submarine mass movement that started very close to the coastline and that involved about 20×106 m3 of material. The second tsunami was engendered by a subaerial landslide that detached at about 500 m above sea level and that involved a volume estimated at 4–9×106 m3. The latter landslide can be seen as the retrogressive continuation of the first failure. The tsunamis were not perceived as distinct events by most people. They attacked all the coasts of Stromboli within a few minutes and arrived at the neighbouring island of Panarea, 20 km SSW of Stromboli, in less than 5 min. The tsunamis caused severe damage at Stromboli.In this work, the two tsunamis are studied by means of numerical simulations that use two distinct models, one for the landslides and one for the water waves. The motion of the sliding bodies is computed by means of a Lagrangian approach that partitions the mass into a set of blocks: we use both one-dimensional and two-dimensional schemes. The landslide model calculates the instantaneous rate of the vertical displacement of the sea surface caused by the motion of the underwater slide. This is included in the governing equations of the tsunami, which are solved by means of a finite-element (FE) technique. The tsunami is computed on two different grids formed by triangular elements, one covering the near-field around Stromboli and the other also including the island of Panarea.The simulations show that the main tsunamigenic potential of the slides is restricted to the first tens of seconds of their motion when they interact with the shallow-water coastal area, and that it diminishes drastically in deep water. The simulations explain how the tsunamis that are generated in the Sciara del Fuoco area, are able to attack the entire coastline of Stromboli with larger effects on the northern coast than on the southern. Strong refraction and bending of the tsunami fronts is due to the large near-shore bathymetric gradient, which is also responsible for the trapping of the waves and for the persistence of the oscillations. Further, the first tsunami produces large waves and runup heights comparable with the observations. The simulated second tsunami is only slightly smaller, though it was induced by a mass that is approximately one third of the first. The arrival of the first tsunami is negative, in accordance with most eyewitness reports. Conversely, the leading wave of the second tsunami is positive.  相似文献   
137.
NOAA’s National Geophysical Data Center is using state-of-the-art Internet tools for natural hazards education, public outreach, and access to natural hazards data. For example, NGDC acquires, processes, and provides access to geologic hazards event data that are useful in natural hazards risk assessment and hazards-related research. In addition, a collection of natural hazards slides and a teacher’s guide on volcanoes are available online. NGDC also created an online “Kids Hazards Quiz” to test the user’s knowledge of disaster safety information. An online Natural Hazards Data Resources Directory provides access to information and links to organizations that provide natural hazards data and information. Expanded access to these data and information by the public and researchers can increase public awareness of natural hazards, improve hazards research, and ultimately reduce the devastating impacts of natural disasters.  相似文献   
138.
Large earthquakes along the Kuril subduction zone in northern Japan are known to have caused damaging tsunami, although there is a little information on historical earthquakes and tsunami in this area because no documents exist before the 19th century that might refer to tsunami events. To determine the likely timing and size of future events we need information on their recurrence intervals and to do this for the prehistoric past we have investigated sediments located in the Kiritappu marsh in eastern Hokaido that we interpret as laid down by tsunami. Using reliable multiple lines of evidence from sedimentological, geomorphological, micropaleontological, and chronological results, we identify 13 tsunami sands. Two of these lie within a peat bed above a historical tephra, Ta-a (AD 1739); the upper one probably corresponds to the AD 1843 Tempo Tokachi-oki earthquake (M 8.2) tsunami, and the lower to either the AD 1952 Tokachi-oki earthquake (M 8.2) tsunami or the AD 1960 Chilean earthquake (M 9.5) tsunami. Underlying are 11 prehistoric tsunami sand beds (nine large sand beds and two smaller sand beds) deposited during the past 4000 years. Because of the wide spatial distribution of the large sand beds, and inundation distances inland of between 1200 to 3000 m, we suggest that they record unusually large tsunamis along the Kuril subduction zone. According to our analyses, these tsunami sands were derived from the coastal area and, although they do not show clear graded bedding, they commonly have gradational upper boundaries and erosional bases and include internal sedimentary structures such as plane beds, dunes, and current ripples, reflecting bedload transportation. Based on our results we calculate the recurrence interval of unusually large earthquakes (probably M 8.6) along the Kuril subduction zone as about 365–553 years and estimate the youngest large event to have occurred in the 17th century.  相似文献   
139.
The tsunami that deeply impacted the North Indian Ocean shores on 26 December 2004, called for urgent rehabilitation of coastal infrastructures to restore the livelihood of local populations. A spatial and statistical analysis was performed to identify what geomorphological and biological configurations (mangroves forests, coral and other coastal vegetation) are susceptible to decrease or increase coastal vulnerability to tsunami. The results indicate that the width of flooded land strip was, in vast majority, influenced by the distance to fault lines as well as inclination and length of proximal slope. Areas covered by seagrass beds were less impacted, whereas areas behind coral reefs were more affected. The mangroves forests identified in the study were all located in sheltered areas, thus preventing to address the potential protecting role of mangroves forests.  相似文献   
140.
Following the catastrophic “Great Sumatra–Andaman” earthquake- tsunami in the Indian Ocean on the 26th December 2004, questions have been asked about the frequency and magnitude of tsunami within the region. We present a summary of the previously published lists of Indian Ocean Tsunami (IOT) and the results of a preliminary search of archival materials held at the India Records Office, at the British Library in London. We demonstrate that in some cases, normal tidal movements and floods associated with tropical cyclones have been erroneously listed as tsunami. We summarise archival material for tsunami that occurred in 1945, 1941, 1881, 1819, 1762 and a little known tsunami in 1843. We present the results of modelling of the 2004, 1861 and 1833 tsunami generated by earthquakes off Sumatra and the 1945 Makran earthquake and tsunami, and examine how these results help to explain some of the historical observations. The highly directional component to tsunami propagation illustrated by the numerical models may explain why we are unable to locate archival records of the 1861 and 1833 tsunami at important locations like Rangoon, Kolkata (formally Calcutta) and Chennai (formally Madras), despite reports that these events created large tsunami that inundated western Sumatra. The numerical models identify other areas (particularly the central and southern Indian Ocean islands) where the 1833 tsunami may have had a large enough effect to produce a historic record. We recommend further archival research, coastal geological investigations of tsunami impacts and detailed modelling of tsunami propagation to better understand the record and effects of tsunami in the Indian Ocean and to estimate their likelihood of occurring in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号