全文获取类型
收费全文 | 2903篇 |
免费 | 196篇 |
国内免费 | 146篇 |
专业分类
测绘学 | 372篇 |
大气科学 | 199篇 |
地球物理 | 672篇 |
地质学 | 485篇 |
海洋学 | 533篇 |
天文学 | 17篇 |
综合类 | 138篇 |
自然地理 | 829篇 |
出版年
2024年 | 17篇 |
2023年 | 40篇 |
2022年 | 105篇 |
2021年 | 149篇 |
2020年 | 135篇 |
2019年 | 102篇 |
2018年 | 83篇 |
2017年 | 121篇 |
2016年 | 108篇 |
2015年 | 99篇 |
2014年 | 163篇 |
2013年 | 222篇 |
2012年 | 96篇 |
2011年 | 161篇 |
2010年 | 96篇 |
2009年 | 186篇 |
2008年 | 179篇 |
2007年 | 152篇 |
2006年 | 140篇 |
2005年 | 123篇 |
2004年 | 110篇 |
2003年 | 93篇 |
2002年 | 80篇 |
2001年 | 85篇 |
2000年 | 56篇 |
1999年 | 47篇 |
1998年 | 35篇 |
1997年 | 47篇 |
1996年 | 32篇 |
1995年 | 25篇 |
1994年 | 22篇 |
1993年 | 19篇 |
1992年 | 19篇 |
1991年 | 14篇 |
1990年 | 15篇 |
1989年 | 9篇 |
1988年 | 15篇 |
1987年 | 7篇 |
1986年 | 8篇 |
1985年 | 4篇 |
1984年 | 9篇 |
1983年 | 4篇 |
1982年 | 6篇 |
1981年 | 5篇 |
1978年 | 2篇 |
排序方式: 共有3245条查询结果,搜索用时 2 毫秒
11.
This paper presents an application of Airborne Laser Scanning (ALS) data in conjunction with an IRS LISS-III image for mapping forest fuel types. For two study areas of 165 km2 and 487 km2 in Sicily (Italy), 16,761 plots of size 30-m × 30-m were distributed using a tessellation-based stratified sampling scheme. ALS metrics and spectral signatures from IRS extracted for each plot were used as predictors to classify forest fuel types observed and identified by photointerpretation and fieldwork. Following use of traditional parametric methods that produced unsatisfactory results, three non-parametric classification approaches were tested: (i) classification and regression tree (CART), (ii) the CART bagging method called Random Forests, and (iii) the CART bagging/boosting stochastic gradient boosting (SGB) approach. This contribution summarizes previous experiences using ALS data for estimating forest variables useful for fire management in general and for fuel type mapping, in particular. It summarizes characteristics of classification and regression trees, presents the pre-processing operation, the classification algorithms, and the achieved results. The results demonstrated superiority of the SGB method with overall accuracy of 84%. The most relevant ALS metric was canopy cover, defined as the percent of non-ground returns. Other relevant metrics included the spectral information from IRS and several other ALS metrics such as percentiles of the height distribution, the mean height of all returns, and the number of returns. 相似文献
12.
In order to understand the nature of the urban climate, predict the effects of urbanization, or attempt to ameliorate some of the negative hydroclimatic effects of urbanization, it is necessary to have a good understanding of the role and significance of the urban surface. This paper presents a methodology which uses GIS to represent the characteristics and morphology of the urban surface, which can be used to describe a site objectively, model fluxes, or ensure spatial consistency between measured and modelled data, all of which can vary through time. The methodology is illustrated with respect to Chicago, Illinois. Surface data collected at three spatial scales were used to construct a georeferenced database which was linked to an objective, dynamic accessing system. Spatial variability of surface cover, derived hydroclimatic attributes, and modelled fluxes associated with changes in the urban environment are used to illustrate potential applications of the approach. 相似文献
13.
提出了一种新的光谱匹配算法——光谱角敏感森林方法。在位置敏感哈希函数算法的基础上引入光谱角度量,并利用新的数据桶检索结构改进了原位置敏感哈希函数算法中部分目标光谱点无法得到匹配光谱的缺陷。理论和实验证明,光谱角敏感森林算法的计算效率较传统高维数据匹配方法有较明显优势。 相似文献
14.
基于GIS的森林资源变化研究 总被引:2,自引:0,他引:2
以黑龙江省汤旺河林业局部分区域森林资源为研究对象,以1968年和2004年森林分布图、小班数据库和其他数据资料为基础,以地理信息系统为技术支持,分析林地资源的数量、种类、空间分布及其森林资源的结构变化,在此基础上,调整恢复合理的森林结构,实现森林资源的永续利用。研究结果表明:有林地和非林地面积增加;针叶林所占比例减少,阔叶林增加;森林资源的结构不太合理,中龄林和近熟林面积占据较大比例。 相似文献
15.
16.
17.
通过对GF-2卫星影像正射校正及波段模拟配准误差试验,分析GF-2卫星正射校正方法的选择以及不同配准误差下对GF-2卫星影像自动分类结果的影响;最后介绍GF-2遥感影像在森林资源监测应用中的初步测试。研究结果表明:正射校正时,当校正精度要求控制在RMS2时,控制点数量选择范围在85~95间较为合理,且控制点数在90个时,RMS值最小;经有理函数模型与卫片模型比较后,卫片模型校正精度较高;以目视判读为主时,实践中建议使用三次卷积重采样法输出结果最好;波段模拟配准误差试验中,配准误差与各地类面积变化间存在显著的线性关系;对于森林面积监测时,配准误差应小于0.3个像元。此研究可为新型国产卫星数据在森林资源监测中的应用提供参考。 相似文献
18.
基于森林模型参数先验知识估算高分辨率叶面积指数 总被引:1,自引:0,他引:1
目前,估算高分辨率叶面积指数LAI(Leaf Area Index)的常用方法是采用大量地面测量数据和遥感数据建立统计模型,再用统计模型估算LAI。然而,与农田地面测量实验相比,森林地面测量实验获取的观测数据更加有限,这使得基于统计模型的森林高分辨率LAI的估算精度低,难以满足应用需求。为此,本文提出一种基于森林模型参数先验知识、使用森林研究区少量的LAI地面测量数据和归一化植被指数NDVI数据估算森林高分辨率LAI的方法。首先,获取全球20个森林实验区的LAI地面测量数据和NDVI数据,建立LAI-NDVI统计模型并提取森林模型参数的先验知识。然后,以一个新的森林站点Concepción作为研究区,将该研究区的数据分为建模数据和验证数据两个部分。使用研究区有限的建模数据对森林模型参数先验知识进行本地化校正得到优化模型,优化模型用于估算森林高分辨率LAI,使用验证数据评价LAI的估算精度。同时,选取了Camerons站点、Gnangara站点、Hirsikangas站点评价本文方法的LAI估算精度。使用地面测量LAI验证基于森林模型参数先验知识估算高分辨率LAI的结果精度,经验证4个森林站点的均方根误差分别为0.6680,0.4449,0.2863,0.5755。研究结果表明:在仅有少量观测数据时,采用本方法能有效地提高森林高分辨率LAI的估算精度。因此,本方法可为森林高分辨率LAI的遥感估算提供参考。 相似文献
19.
Accurate spatio-temporal classification of crops is of prime importance for in-season crop monitoring. Synthetic Aperture Radar (SAR) data provides diverse physical information about crop morphology. In the present work, we propose a day-wise and a time-series approach for crop classification using full-polarimetric SAR data. In this context, the 4 × 4 real Kennaugh matrix representation of a full-polarimetric SAR data is utilized, which can provide valuable information about various morphological and dielectric attributes of a scatterer. The elements of the Kennaugh matrix are used as the parameters for the classification of crop types using the random forest and the extreme gradient boosting classifiers.The time-series approach uses data patterns throughout the whole growth period, while the day-wise approach analyzes the PolSAR data from each acquisition into a single data stack for training and validation. The main advantage of this approach is the possibility of generating an intermediate crop map, whenever a SAR acquisition is available for any particular day. Besides, the day-wise approach has the least climatic influence as compared to the time series approach. However, as time-series data retains the crop growth signature in the entire growth cycle, the classification accuracy is usually higher than the day-wise data.Within the Joint Experiment for Crop Assessment and Monitoring (JECAM) initiative, in situ measurements collected over the Canadian and Indian test sites and C-band full-polarimetric RADARSAT-2 data are used for the training and validation of the classifiers. Besides, the sensitivity of the Kennaugh matrix elements to crop morphology is apparent in this study. The overall classification accuracies of 87.75% and 80.41% are achieved for the time-series data over the Indian and Canadian test sites, respectively. However, for the day-wise data, a ∼6% decrease in the overall accuracy is observed for both the classifiers. 相似文献
20.
The fractional vegetation cover (FVC), crop residue cover (CRC), and bare soil (BS) are three important parameters in vegetation–soil ecosystems, and their correct and timely estimation can improve crop monitoring and environmental monitoring. The triangular space method uses one CRC index and one vegetation index to create a triangular space in which the three vertices represent pure vegetation, crop residue, and bare soil. Subsequently, the CRC, FVC, and BS of mixed remote sensing pixels can be distinguished by their spatial locations in the triangular space. However, soil moisture and crop-residue moisture (SM-CRM) significantly reduce the performance of broadband remote sensing CRC indices and can thus decrease the accuracy of the remote estimation and mapping of CRC, FVC, and BS. This study evaluated the use of broadband remote sensing, the triangular space method, and the random forest (RF) technique to estimate and map the FVC, CRC, and BS of cropland in which SM-CRM changes dramatically. A spectral dataset was obtained using: (1) from a field-based experiment with a field spectrometer; and (2) from a laboratory-based simulation that included four distinct soil types, three types of crop residue (winter-wheat, maize, and rice), one crop (winter wheat), and varying SM-CRM. We trained an RF model [designated the broadband crop-residue index from random forest (CRRF)] that can magnify spectral features of crop residue and soil by using the broadband remote sensing angle indices as input, and uses a moisture-resistant hyperspectral index as the target. The effects of moisture on crop residue and soil were minimized by using the broadband CRRF. Then, the CRRF-NDVI triangular space method was used to estimate and map CRC, FVC, and BS. Our method was validated by using both laboratory- and field-based experiments and Sentinel-2 broadband remote-sensing images. Our results indicate that the CRRF-NDVI triangular space method can reduce the effect of moisture on the broadband remote-sensing of CRC, and may also help to obtain laboratory and field CRC, FVC, and BS. Thus, the proposed method has great potential for application to croplands in which the SM-CRM content changes dramatically. 相似文献