首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   999篇
  免费   10篇
  国内免费   14篇
测绘学   9篇
大气科学   4篇
地球物理   52篇
地质学   49篇
海洋学   1篇
天文学   886篇
综合类   2篇
自然地理   20篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   13篇
  2020年   2篇
  2019年   3篇
  2018年   7篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   4篇
  2013年   10篇
  2012年   10篇
  2011年   128篇
  2010年   171篇
  2009年   113篇
  2008年   126篇
  2007年   74篇
  2006年   102篇
  2005年   83篇
  2004年   74篇
  2003年   37篇
  2002年   26篇
  2001年   4篇
  2000年   4篇
  1999年   8篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1985年   1篇
排序方式: 共有1023条查询结果,搜索用时 31 毫秒
91.
A broad pitted plain and an elongated low rise occur near the south pole of Mars between a region of major cavi (Cavi Angusti) and a regionally smooth and broad valley (Argentea Planum). Viking, Mars Global Surveyor (MGS), and Odyssey data reveal a densely pitted plain covering ∼6750 km2, and containing >300 irregularly shaped, steep-walled and flat-floored depressions with a mean diameter of ∼3.5 km. At the southernmost (poleward) extent of this plain are 12 north/south trending linear valleys that are characterized by theater-shaped heads abutting a major cavi within Cavi Angusti. The pitted plain, which abuts Cavi Angusti to the southwest, is separated from the floor of Argentea Planum by a smooth, elongated low rise that extends parallel to the plain for ∼200 km. These unusual features are all found within the Hesperian-aged circumpolar Dorsa Argentea Formation, which has been interpreted by some workers to be an ice-rich glacier-related deposit. We interpret the pitted plain to represent the maximum northern extent of the Angusti lobe ice deposit. The pits are analogous in morphology and distribution to terrestrial kettle holes, which form from the melting of isolated ice-blocks surrounded and partly buried by sediment, to leave hollows. The linear valleys are consistent with sapping valleys formed from the release of an elevated groundwater table, fed by meltwater lakes. On the basis of these characteristics, relationships and analogs, we interpret the marginal facies to represent an ice-sheet/lake contact environment that existed during Hesperian time.  相似文献   
92.
C.C. Reese  V.S. Solomatov 《Icarus》2006,184(1):102-120
The evolution of a melt region produced by a large impact during Mars formation is addressed. While some impact induced melt is redistributed during crater excavation, sufficiently large impacts (much larger than basin forming impacts) generate an intact melt region which is retained beneath the excavation zone, i.e., a local magma ocean. Local magma ocean evolution depends on the effective rheology controlling large scale deformation of the solid part of the planet, mechanism of crystallization, and melt region size. Within the uncertainties of various parameters, two scenarios are possible. For sufficiently weak rheology or large melt region size, evolution is characterized by rapid extrusion and formation of a global magma ocean. For sufficiently strong rheology or small melt region size, in situ crystallization to a partially molten solid state occurs prior to isostatic adjustment. Subsequent to in situ crystallization, local magma ocean evolution depends on melt region size and efficiency of lateral redistribution compared to bulk conductive cooling. For large melt regions, lateral spreading occurs via plastic deformation and results in an asymmetric, global, partial melt layer. For small melt region size, viscous spreading viscous can result in bulk cooling below the solidus prior to formation of a global layer. A hypothesis for the origin of the hemispherical crustal dichotomy and Tharsis rise is suggested. The dichotomy is associated with a global partial melt layer produced by evolution of a large, local magma ocean. After dichotomy formation, evolution of a second, smaller, local magma ocean is related to Tharsis development.  相似文献   
93.
Through a combination of aerobraking (drag deceleration) and ablation, meteoroids which enter planetary atmospheres may be slowed sufficiently to soft-land as meteorites. Results of an earlier study suggest that the current 6 mbar atmosphere of Mars is sufficient to aerobrake significant numbers of small (<10 kg) asteroidal-type meteoroids into survivable, low-velocity (<500 m s−1) impacts with the planet's surface. Since rates of meteorite production depend upon the density of Mars's atmosphere, they must also change as the martian climate changes. However, to date, martian meteorite production has received relatively little attention in the literature Here we expand upon our previous work to study martian meteorite production rates and how they depend upon variations of the martian atmosphere, and to estimate the ranges of mass, velocity and entry-angle that produce meteorites. We find that even the current atmosphere of Mars is sufficient to soft-land significant fractions of incident stony and iron objects, and that these fractions increase dramatically for denser martian atmospheres. Therefore, like impact cratering, meteorite populations may preserve evidence of past martian climates.  相似文献   
94.
We report results of polarimetric imaging observations of Mars with the Hubble Space Telescope during the 2003 opposition. Through careful calibration, the observations with the ACS camera allow measurements of the polarization degree with an absolute accuracy better than 0.5% and detection of features with polarization degree contrast as small as 0.2%. The general distribution of linear polarization parameters over the Mars disk and their dependence on phase angle and wavelength are well explained qualitatively by a combination of scattering separately by the martian surface and atmosphere. We have discovered transient polarization phenomena interpreted as clouds that are best observed in ultraviolet light. These clouds are optically thin but strongly polarizing, and their origin may be related to atmospheric ice condensation processes.  相似文献   
95.
Raman spectra of an extremophile cyanobacterial colony in hydromagnesite from Lake Salda in Turkey have revealed a biogeological modification which is manifest as aragonite in the stratum associated with the colony. The presence of key spectral biomarkers of organic protectant molecules such as β-carotene and scytonemin indicate that the survival strategy of the cyanobacteria is significantly one of UV-radiation protection. The terrestrial location of this extremophile is worthy of consideration further because of its possible putative link with the “White Rock” formations in Sabaea Terra and Juventae Chasma on Mars.  相似文献   
96.
Distinct competent layers are observed in the slopes of eastern Coprates Chasma, part of the Valles Marineris system on Mars. Our observations indicate that the stratigraphy of Coprates Chasma consists of alternating thin strong layers and thicker sequences of relatively weak layers. The strong, competent layers maintain steeper slopes and play a major role in controlling the overall shape and geomorphology of the chasmata slopes. The topmost competent layer in this area is well preserved and easy to identify in outcrops on the northern rim of Coprates Chasma less than 100 m below the southern Ophir Planum surface. The volume of the topmost emplaced layer is at least 70 km3 and may be greater than 2100 km3 if the unit underlies most of Ophir Planum. The broad extent of this layer allows us to measure elevation offsets within the north rim of the chasma and in a freestanding massif within Coprates Chasma where the layer is also observed. Rim outcrop morphology and elevation differences between Ophir and Aurorae Plana may be indicative of the easternmost extent of the topmost competent layer. These observations allow an insight into the depositional processes that formed the stratigraphic stack into which this portion of the Valles Marineris is carved, and they present a picture of some of the last volcanic activity in this area. Furthermore, the elevation offsets within the layer are evidence of significant subsidence of the massif and surrounding material.  相似文献   
97.
The Vision for U.S. Space Exploration offers new opportunities for aggressively increasing the pace of scientific discoveries across the Solar System by empowering an on-site partnership between humans and robotics, enhanced by new technology-enabled capabilities. In particular, the early emphasis of this new Vision will be on development of new scientific activities on the Moon, and later on Mars. Integration of in situ traditional science activities with creative new types of applied scientific research on the Moon and Mars is a key ingredient in the US Vision. The Apollo era record of achievement involving human exploration is particularly informative, as it demonstrates the accelerated pace of scientific discovery and understanding that resulted from human “on site” activities, however briefly, on planetary surfaces. An example of how integrated human and robotic exploration can enable breakthrough science on the planet Mars is provided in order to illustrate these points. The scientific opportunities associated with the Vision for US Space Exploration are many, and with the incorporation of human-based capabilities on the Moon and Mars, an accelerated pace of discovery and understanding will be possible.  相似文献   
98.
I will argue that an ambitious programme of human space exploration, involving a return to the Moon, and eventually human missions to Mars, will add greatly to human knowledge. Gathering such knowledge is the primary aim of science, but science’s compartmentalisation into isolated academic disciplines tends to obscure the overall strength of the scientific case. Any consideration of the scientific arguments for human space exploration must therefore take a holistic view, and integrate the potential benefits over the entire spectrum of human knowledge. Moreover, science is only one thread in a much larger overall case for human space exploration. Other threads include economic, industrial, educational, geopolitical and cultural benefits. Any responsibly formulated public space policy must weigh all of these factors before deciding whether or not an investment in human space activities is scientifically and socially desirable.  相似文献   
99.
In the past 125 years, more than 70 authors have published ideas for keeping time on Mars, describing how to divide the Martian day and Martian year into smaller units. The Martian prime meridian was established in the mid-19th century, and the design of the Martian clock has been standardised at least since the Viking missions of the 1970s. Scientists can tell time on Mars; however, despite the constant stream of data that is downlinked from Mars these days, there is still no standardised system for expressing the date on Mars. Establishing a standard epoch—at a specific time of year on Mars, and a specific Martian year—should be the next priority in Martian timekeeping as a minimal system required for the physical sciences. More elaborate ideas, including the number and length of weeks and months, and names thereto, can be deferred for the present, but may become important considerations in coming years.  相似文献   
100.
We report on PFS-MEX (Planetary Fourier Spectrometer on board Mars Express) limb observations of the non-Local Thermodynamic Equilibrium emission by CO and CO2 isotopic molecules. The CO emission is observed peaking at altitudes lower than the CO2 emission peak. Two orbits have been considered, which explore latitudes from 75 to 15° N, located in local time at 11:30 and 06:40, and with Ls=138° and 168°, respectively. In general in the season considered (northern summer) the emission intensity increases going to lower latitudes. The peak emission height is also decreasing with decreasing latitude. The CO2 isotopic molecules are emitting radiance out of proportion with respect to the normal isotopic abundance, which surely indicates a strong contribution from a large number of much weaker CO2 bands, a result that will demand careful theoretical modeling. By comparison with Hitran data base we can identify, among the emitting bands, the second hot band for the 626 and 636 molecule, while for the 628 and 627 emission from the third hot bands are very possible. Other minor bands or lines are also observed in emission for the first time in Mars. In one of the two orbits considered, the orbit 1234 of MEX, we also observe at altitudes 80-85 km scattered radiation, with indication of CO2 ice aerosols as scattering centers. At the same altitude the Pathfinder descending measurements show a temperature that allows CO2 condensation. Pathfinder measurements were at 03:00 local time, while our observations are for orbit 1234 showing CO2 ice signature at 11:30 local time. These non-LTE limb emissions, with their unprecedented spectral resolution in this portion of the near infrared and their sensitivity and geographical coverage, will represent in our opinion an excellent data set for testing current theoretical models of the martian upper atmosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号