首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   730篇
  免费   126篇
  国内免费   318篇
测绘学   2篇
大气科学   13篇
地球物理   237篇
地质学   678篇
海洋学   81篇
天文学   19篇
综合类   22篇
自然地理   122篇
  2024年   1篇
  2023年   8篇
  2022年   10篇
  2021年   14篇
  2020年   35篇
  2019年   28篇
  2018年   36篇
  2017年   25篇
  2016年   14篇
  2015年   25篇
  2014年   40篇
  2013年   45篇
  2012年   24篇
  2011年   37篇
  2010年   19篇
  2009年   68篇
  2008年   72篇
  2007年   78篇
  2006年   64篇
  2005年   63篇
  2004年   53篇
  2003年   45篇
  2002年   35篇
  2001年   30篇
  2000年   29篇
  1999年   43篇
  1998年   34篇
  1997年   30篇
  1996年   25篇
  1995年   25篇
  1994年   21篇
  1993年   25篇
  1992年   15篇
  1991年   12篇
  1990年   7篇
  1989年   9篇
  1988年   6篇
  1987年   9篇
  1986年   5篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1978年   3篇
排序方式: 共有1174条查询结果,搜索用时 109 毫秒
31.
32.
33.
34.
New satellite technology to measure changes in the Earth’s gravity field gives new possibilities to detect layers of low viscosity inside the Earth. We used density models for the Earth mantle based on slab history as well as on tomography and fitted the viscosity by comparison of predicted gravity to the new CHAMP gravity model. We first confirm that the fit to the observed geoid is insensitive to the presence of a low viscosity anomaly in the upper mantle as long as the layer is thin ( 200 km) and the viscosity reduction is less than two orders of magnitude. Then we investigated the temporal change in geoid by comparing two stages of slablet sinking based on subduction history or by advection of tomography derived densities and compared the spectra of the geoid change for cases with and without a low viscosity layer, but about equal fit to the observed geoid. The presence of a low viscosity layer causes relaxation at smaller wavelength and thus leads to a spectrum with relatively stronger power in higher modes and a peak around degrees 5 and 6. Comparing the spectra to the expected degree resolution for GRACE data for a 5 years mission duration shows a weak possibility to detect changes in the Earth’s gravity field due to large scale mantle circulation, provided that other causes of geoid changes can be taken into account with sufficient accuracy. A discrimination between the two viscosity cases, however, demands a new generation of gravity field observing satellites.  相似文献   
35.
Introduction The velocity field of surface plate motion can be split into a poloidal and a toroidal parts.At the Earth′s surface,the toroidal component is manifested by the existence of transform faults,and the poloidal component by the presence of convergence and divergence,i.e.spreading and subduc-tion zones.They have coupled each other and completely depicted the characteristics of plate tec-tonic motions.The mechanism of poloidal field has been studied fairly clearly which is related to …  相似文献   
36.
37.
38.
Dougal A. Jerram  Mike Widdowson   《Lithos》2005,79(3-4):385-405
The internal architecture of the immense volumes of eruptive products in Continental Flood Basalt Provinces (CFBPs) provides vital clues, through the constraint of a chrono-stratigraphic framework, to the origins of major intraplate melting events. This work presents close examination of the internal facies architecture and structure, duration of volcanism, epeirogenetic uplift associated with CFBPs, and the potential environmental impacts of three intensely studied CFBPs (the Parana-Etendeka, Deccan Traps and North Atlantic Igneous Province). Such a combination of key volcanological, stratigraphic and chronologic observations can reveal how a CFBP is constructed spatially and temporally to provide crucial geological constraints regarding their development.

Using this approach, a typical model can be generated, on the basis of the three selected CFBPs, that describes three main phases of flood basalt volcanism. These phases are recognized in Phanerozoic CFBPs globally. At the inception of CFBP volcanism, relatively low-volume transitional-alkaline eruptions are forcibly erupted into exposed cratonic basement lithologies, sediments, and in some cases, water. Distribution of initial volcanism is strongly controlled by the arrangement of pre-existing topography, the presence of water bodies and local sedimentary systems, but is primarily controlled by existing lithospheric and crustal weaknesses and concurrent regional stress patterns. The main phase of volcanism is typically characterised by a culmination of repeated episodes of large volume tholeiitic flows that predominantly generate large tabular flows and flow fields from a number of spatially restricted eruption sites and fissures. These tabular flows build a thick lava flow stratigraphy in a relatively short period of time (c. 1–5 Ma). With the overall duration of flood volcanism lasting 5–10 Ma (the main phase accounting for less than half the overall eruptive time in each specific case). This main phase or ‘acme’ of volcanism accounts for much of the CFBP eruptive volume, indicating that eruption rates are extremely variable over the whole duration of the CFBP. During the waning phase of flood volcanism, the volume of eruptions rapidly decrease and more widely distributed localised centres of eruption begin to develop. These late-stage eruptions are commonly associated with increasing silica content and highly explosive eruptive products. Posteruptive modification is characterised by continued episodes of regional uplift, associated erosion, and often the persistence of a lower-volume mantle melting anomaly in the offshore parts of those CFBPs at volcanic rifted margins.  相似文献   

39.
A Lagrangian particle‐based method, smooth particle hydrodynamics (SPH), is used in this paper to model the flow of self‐compacting concretes (SCC) with or without short steel fibres. An incompressible SPH method is presented to simulate the flow of such non‐Newtonian fluids whose behaviour is described by a Bingham‐type model, in which the kink in the shear stress vs shear strain rate diagram is first appropriately smoothed out. The viscosity of the SCC is predicted from the measured viscosity of the paste using micromechanical models in which the second phase aggregates are treated as rigid spheres and the short steel fibres as slender rigid bodies. The basic equations solved in the SPH are the incompressible mass conservation and Navier–Stokes equations. The solution procedure uses prediction–correction fractional steps with the temporal velocity field integrated forward in time without enforcing incompressibility in the prediction step. The resulting temporal velocity field is then implicitly projected on to a divergence‐free space to satisfy incompressibility through a pressure Poisson equation derived from an approximate pressure projection. The results of the numerical simulation are benchmarked against actual slump tests carried out in the laboratory. The numerical results are in excellent agreement with test results, thus demonstrating the capability of SPH and a proper rheological model to predict SCC flow and mould‐filling behaviour. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
40.
The Early Cretaceous (∼135–131 Ma) Paraná-Etendeka continental flood basalts, preserved in bulk in the Paraná basin of southern Brazil and vicinity, have been divided into low-Ti and high-Ti types that govern the southern and northern halves of the basin, respectively. We have examined a new sample set from the southern margin of the northern high-Ti segment of Paraná basalts in Misiones, northeastern Argentina. These basalts are strongly to moderately enriched in TiO2 (2–4 wt.%), have relatively high Ti/Y (300–500), low MgO (3.5–6.5 wt.%), and high Fe (FeO(tot) 12–14 wt.%) and belong to the Pitanga and Paranapanema magma types of Peate et al. (1992). Nd and Sr isotope compositions are quite unvarying with εNd (at 133 Ma) values of −4.6 to −3.6 and initial 87Sr/86Sr of 0.7054–0.7059 and show no variation with fractionation. Compared to high-Ti lavas in the central and northern parts of the Paraná high-Ti basalt segment, the lavas from Misiones are similar to those in the northeastern magin of the basin but less radiogenic in initial Nd isotope composition than those in the central part. This variation probably reflects mixed EM1-EM2 source components in the sublithospheric mantle. A polybaric melt model of a sublithospheric mantle source at the garnet lherzolite-spinel lherzolite transition is compatible with the observed Ti budget of the Pitanga and Paranapanema lavas, regardless of the Nd isotope composition of their purported source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号