全文获取类型
收费全文 | 2564篇 |
免费 | 867篇 |
国内免费 | 376篇 |
专业分类
测绘学 | 33篇 |
大气科学 | 73篇 |
地球物理 | 1776篇 |
地质学 | 1505篇 |
海洋学 | 249篇 |
天文学 | 23篇 |
综合类 | 69篇 |
自然地理 | 79篇 |
出版年
2024年 | 19篇 |
2023年 | 63篇 |
2022年 | 96篇 |
2021年 | 88篇 |
2020年 | 104篇 |
2019年 | 136篇 |
2018年 | 130篇 |
2017年 | 115篇 |
2016年 | 167篇 |
2015年 | 125篇 |
2014年 | 186篇 |
2013年 | 197篇 |
2012年 | 125篇 |
2011年 | 179篇 |
2010年 | 90篇 |
2009年 | 169篇 |
2008年 | 171篇 |
2007年 | 158篇 |
2006年 | 150篇 |
2005年 | 113篇 |
2004年 | 108篇 |
2003年 | 109篇 |
2002年 | 105篇 |
2001年 | 105篇 |
2000年 | 92篇 |
1999年 | 76篇 |
1998年 | 73篇 |
1997年 | 70篇 |
1996年 | 83篇 |
1995年 | 68篇 |
1994年 | 70篇 |
1993年 | 58篇 |
1992年 | 45篇 |
1991年 | 33篇 |
1990年 | 25篇 |
1989年 | 18篇 |
1988年 | 29篇 |
1987年 | 9篇 |
1986年 | 8篇 |
1985年 | 1篇 |
1984年 | 11篇 |
1983年 | 3篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1979年 | 12篇 |
1978年 | 6篇 |
1977年 | 2篇 |
1954年 | 4篇 |
排序方式: 共有3807条查询结果,搜索用时 15 毫秒
51.
Deep structure of the Nojima Fault, southwest Japan, estimated from borehole observations of fault-zone trapped waves 总被引:1,自引:0,他引:1
To estimate the deep structure of the southern part of the Nojima Fault, southwest Japan without the influence of near-surface structures, we analyzed the Love-wave-type fault-zone trapped waves (LTWs) recorded by a borehole seismometer at 1800 m depth. We examined the polarization, dispersion, and dominant frequency of the wavetrain following the direct S-wave in each seismogram to identify the LTW. We selected eight candidates for typical LTWs from 462 records. Because the duration of the LTW increases with hypocentral distance, we infer that the low velocity fault-zone of the Nojima Fault continues towards the seismogenic depth. In addition, since the duration of the LTW increases nonlinearly with hypocentral distance, we infer that the S-wave velocity of the fault-zone increases with depth. The location of events showing the LTW indicates that the fault-zone dips to the southeast at 75° and continues to a depth of approximately 10 km. We assumed a uniform low-velocity waveguide to estimate the average structure of the fault-zone. We estimated the average width, S-wave velocity, and Qs of the fault-zone by comparing an analytical solution of the LTW with measured data. The average width, S-wave velocity, and Qs of the fault-zone are 150 to 290 m, 2.5 to 3.2 km/s, and 40 to 90, respectively. Hence the fault-zone structure with a larger width and smaller velocity reduction than the fault-zone model estimated by previous surface observation is more suitable to represent the average fault-zone structure of the Nojima fault. The present study also indicated that the shallow layers and/or a shallow fault-zone structure drastically changes the characteristics of the LTW recorded at the surface, and therefore cause a discrepancy in the fault-zone model between the borehole observation and surface observation. 相似文献
52.
Fault-controlled dolomitization at Swan Hills Simonette oil field (Devonian), deep basin west-central Alberta, Canada 总被引:6,自引:0,他引:6
The partly dolomitized Swan Hills Formation (Middle‐Upper Devonian) in the Simonette oil field of west‐central Alberta underwent a complex diagenetic history, which occurred in environments ranging from near surface to deep (>2500 m) burial. Five petrographically and geochemically distinct dolomites that include both cementing and replacive varieties post‐date stylolites in limestones (depths >500 m). These include early planar varieties and later saddle dolomites. Fluid inclusion data from saddle dolomite cements (Th=137–190 °C) suggest that some precipitated at burial temperatures higher than the temperatures indicated by reflectance data (Tpeak=160 °C). Thus, at least some dolomitizing fluids were ‘hydrothermal’. Fluorescence microscopy identified three populations of primary hydrocarbon‐bearing fluid inclusions and confirms that saddle dolomitization overlapped with Upper Cretaceous oil migration. The source of early dolomitizing fluids probably was Devonian or Mississippian seawater that was mixed with a more 87Sr‐rich fluid. Fabric‐destructive and fabric‐preserving dolostones are over 35 m thick in the Swan Hills buildup and basal platform adjacent to faults, thinning to less than 10 cm thick in the buildup between 5 and 8 km away from the faults. This ‘plume‐like’ geometry suggests that early and late dolomitization events were fault controlled. Late diagenetic fluids were, in part, derived from the crystalline basement or Palaeozoic siliciclastic aquifers, based on 87Sr/86Sr values up to 0·7370 from saddle dolomite, calcite and sphalerite cements, and 206Pb/204Pb of 22·86 from galena samples. Flow of dolomitizing and mineralizing fluids occurred during burial greater than 500 m, both vertically along reactivated faults and laterally in the buildup along units that retained primary and/or secondary porosity. 相似文献
53.
郯庐断裂带晚中生代演化历史及其对华北克拉通破坏过程的指示 总被引:5,自引:8,他引:5
郯庐断裂带晚中生代的演化历史是华北克拉通破坏过程的重要记录。中侏罗世末(燕山运动A幕),郯庐断裂带局部发生左行平移活动,而华北克拉通上出现了一系列北北东走向的缩短构造,指示了西太平洋伊泽奈崎板块俯冲的开始。晚侏罗世期间,郯庐断裂带没有发生活动,而华北克拉通出现局部伸展与岩浆活动及区域性隆升,应为弧后弱拉张背景。早白垩世初(燕山运动B幕),郯庐断裂带再次发生强烈的左行平移活动,华北克拉通北部与东部出现了一系列近南北向挤压产生的构造,应是鄂霍茨克洋最终关闭与伊泽奈崎板块高速俯冲双重作用的结果。随后的早白垩世期间,华北克拉通在弧后拉张背景下发生峰期破坏,郯庐断裂带呈现为强烈的伸展活动。早白垩世末的区域性挤压作用,结束了华北克拉通的峰期破坏,并使郯庐断裂带再次发生了一期左行平移活动。这期挤压作用出现在太平洋板块接替伊泽奈崎板块这一重大板块调整的背景之中。 相似文献
54.
《Chemie der Erde / Geochemistry》2016,76(1):39-48
Metal speciation study in combination with major element chemistry of deep sea sediments provided possible metal enrichment pathways in sediments collected from environmentally different locations of Central Indian Ocean Basin (CIB). Metal speciation study suggests that Fe–Mn oxyhydroxide phase was the major binding phase for Ni, Cu and Pb in the sediments. The second highest concentrations of all these metals were present within the structure of the sediments. Easily reducible oxide phase (within the Fe–Mn oxyhydroxide binding phases) was the major host for all the three metals in the studied sediments. Major element chemistry of these sediments revealed that there was an increased tendency of Cu and Ni to get incorporated into the deep sea sediment via the non-terrigenous Mn-oxyhydroxide fraction, whereas, Pb gets incorporated mostly via amorphous Fe-hydroxides into the sediment from the CIB. This is the first attempt to provide an insight into the mechanism of metal enrichment in sediment that host vast manganese nodule. 相似文献
55.
We compare frictional strengths in the temperature range 25–250 °C of fault gouge from SAFOD (CDZ and SDZ) with quartzofeldspathic wall rocks typical of the central creeping section of the San Andreas Fault (Great Valley sequence and Franciscan Complex). The Great Valley and Franciscan samples have coefficients of friction, μ > 0.35 at all experimental conditions. Strength is unchanged between 25° and 150 °C, but μ increases at higher temperatures, exceeding 0.50 at 250 °C. Both samples are velocity strengthening at room temperature but show velocity-weakening behavior beginning at 150 °C and stick-slip motion at 250 °C. These rocks, therefore, have the potential for unstable seismic slip at depth. The CDZ gouge, with a high saponite content, is weak (μ = 0.09–0.17) and velocity strengthening in all experiments, and μ decreases at temperatures above 150 °C. Behavior of the SDZ is intermediate between the CDZ and wall rocks: μ < 0.2 and does not vary with temperature. Although saponite is probably not stable at depths greater than ∼3 km, substitution of the frictionally similar minerals talc and Mg-rich chlorite for saponite at higher temperatures could potentially extend the range of low strength and stable slip down to the base of the seismogenic zone. 相似文献
56.
In the north-western Bonaparte Basin (North West Shelf of Australia) Neogene to Recent flexure-induced extension superimposed obliquely over the Mesozoic rift structures. Thus, the area offers a good opportunity to investigate the dynamics and architecture of oblique extension fault systems. Analysis of basin-scale 2D and 3D seismic data along the Vulcan sub-basin shows that Neogene deformation produced a new set of extensional, en échelon faults, at places accompanied by the reactivation of the Mesozoic faults. The pre-existing Mesozoic structures strongly control the distribution of the Neogene-Recent deformation, both at regional and local scales. Main controls on the Neogene-Recent fault style, density and segmentation/linkage include: (1) the orientation of the underlying Mesozoic structures, (2) the obliqueness of the younger extension relative to the rift-inherited faults, and (3) the proximity to the Timor Trough. Three types of vertical relationships have been observed between Mesozoic and Neogene-Recent faults. Hard linkages seems to develop when both fault systems trend parallel, therefore increasing risks for trap integrity. It is suggested that the orientation of maximum horizontal stress (SHmax) relative to the Mesozoic faults, forming hydrocarbon traps, is critical for their potential seal/leak behaviour. Stratigraphic growth across the faults indicates that main fault activity occurred during the Plio-Pleistocene, which corresponds to the timing of tectonic loading on Timor Island and the development of lithospheric flexure. Synchronism of normal faulting with flexural bending suggests that extensional deformation on the descending Australian margin accompanied the formation of the Timor Trough. 相似文献
57.
安徽池州铜山铜矿深部找矿实践与启示 总被引:4,自引:0,他引:4
铜山铜矿资源储量日益枯竭。危机矿山接替资源勘查中,采用地质、物探综合手段圈定异常区,经深部钻探验证,取得突破。 相似文献
58.
在树木地震学测年技术研究的基础上,沿古浪活断层西段鉴定和评价了数百棵树。对树木生长速率及年轮比率低值偏离的3种类型进行了有效的识别。结果表明:断崖上被破坏的青海云杉中,记录的结构和生长速率异常,可以归因于1927年5月23日古浪8级大地震的影响。从而为古浪地震断层的判定提供了准确的年代证据。并将前人认为的古浪地震断层位置向冷龙岭北麓南移了30余公里。用该方法在老虎山活断层上对1888年11月2日景秦61/4级地震破裂带定年,再次获得成效 相似文献
59.
Two sets of active faults,northwest-and northeast-trending faults,are developed in the Chao-shan Plain of East Guangdong.After detailed interpretation of aerophotos,we have found outthat there is the clear phenomenon of sinistral dislocation of drainage system on the Huang-gang-shui fault and part of Fengshun-Shantou fault.Field investigation confirmed that the geo-morphic bodies along the two faults have undergone displacement.Large-scale topographicmapping was made at three displaced sites and samples for age dating were collected from thegeomorphic booies.Calculation indicates that the average rate of sinistral strike-slip movementin the Holocene time amounts to 1.11±0.09~2.69±0.24mm/a along the Huanggangshuifault and 3.26±0.26mm/a along the Fengshun-Shantou fault.These two more active NW-trending faults extend into sea area,where they intersect the NE-trending strongly active Nius-han Island-Xiongdi Isle-Nanpeng Isles fault at a depth of 40~50m in water.The intersection isa location favorable fo 相似文献
60.
Taner Ekici Musa Alpaslan Osman Parlak Abidin Temel 《Chemie der Erde / Geochemistry》2007,67(3):201-212
The study area is located on the middle sector of the Malatya-Ovacık Fault Zone (MOFZ) in the eastern Anatolia. Four basaltic flows from bottom to top, which are tholeiitic in character and intercalated with Pliocene sedimentary rocks, were erupted along this fault zone. Chemical compositions of these flows reveal some differences between the first flow and others in terms of high-field strength elements (HFSEs) (e.g. Ti, Zr, Nb). Limited variations in compositions within the first flow and upper flows suggest a limited fractionation range. Trace-element patterns exhibit that all the flows have similar and OIB-like patterns without positive peak at Pb and a trough at Nb—Ta, indicating minimal or no crustal contribution. Rare-earth element (REE) patterns indicate that the first flow has flat patterns with negative Eu anomaly, whereas the upper flows have variable enrichments in LREE and depletions in HREE. La/SmN, Dy/YbN and Zr/Y ratios exhibit that the degree of partial melting decreases from the first flow to upper flows. Higher values of La/YbN ratio for the upper flows and depletions at Y and Yb on the trace-element patterns suggest the presence of garnet as a residual phase, which imply that the depth of partial melting took place solely in the garnet-stability field. OIB-like trace-element patterns and trace-element ratios (e.g. La/Nb, Ce/Y and Zr/Nb) emphasize that the melts forming the Arguvan basalt were originated from the asthenospheric mantle rather than the lithospheric mantle. 相似文献