首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   30篇
  国内免费   7篇
地球物理   50篇
地质学   22篇
自然地理   1篇
  2022年   1篇
  2020年   6篇
  2019年   6篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   6篇
  2011年   5篇
  2010年   6篇
  2009年   1篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   6篇
  2002年   3篇
  1996年   2篇
  1991年   3篇
  1988年   1篇
  1954年   1篇
排序方式: 共有73条查询结果,搜索用时 31 毫秒
11.
Seafloor magnetotelluric (MT) data were collected at seven sites across the Hawaiian hot spot swell, spread approximately evenly between 120 and 800 km southwest of the Hawaiian-Emperor island chain. All data are consistent with an electrical strike direction of 300°, aligned along the seamount chain, and are well fit using two-dimensional (2D) inversion. The major features of the 2D electrical model are a resistive lithosphere underlain by a conductive lower mantle, and a narrow, conductive, ‘plume’ connecting the surface of the islands to the lower mantle. This plume is required; without it the swell bathymetry produces a large divergence of the along-strike and across-strike components of the MT fields, which is not seen in the data. The plume radius appears to be less than 100 km, and its resistivity of around 10 Ωm, extending to a depth of 150 km, is consistent with a bulk melt fraction of 5–10%.A seismic low velocity region (LVR) observed by Laske et al. [Laske, G., Phipp Morgan, J., Orcutt, J.A., 1999. First results from the Hawaiian SWELL experiment, Geophys. Res. Lett. 26, 3397–3400] at depths centered around 60 km and extending 300 km from the islands is not reflected in our inverse model, which extends high lithospheric resistivities to the edge of the conductive plume. Forward modeling shows that resistivities in the seismic LVR can be lowered at most to 30 Ωm, suggesting a maximum of 1% connected melt and probably less. However, a model of hot subsolidus lithosphere of 102 Ωm (1450–1500 °C) within the seismic LVR increasing to an off-swell resistivity of >103 Ωm (<1300 °C) fits the MT data adequately and is also consistent with the 5% drop in seismic velocities within the LVR. This suggests a ‘hot, dry lithosphere’ model of thermal rejuvination, or possibly underplated lithosphere depleted in volatiles due to melt extraction, either of which is derived from a relatively narrow mantle plume source of about 100 km radius. A simple thermal buoyancy calculation shows that the temperature structure implied by the electrical and seismic measurements is in quantitative agreement with the swell bathymetry.  相似文献   
12.
Resistivity structure of a seismic gap along the Atotsugawa Fault, Japan   总被引:1,自引:0,他引:1  
Seismicity along the Atotsugawa Fault, located in central Japan, shows a clear heterogeneity. The central segment of the fault with low-seismicity is recognized as a seismic gap, although a lot of micro-earthquakes occur along this fault. In order to elucidate the cause of the heterogeneity in seismicity, the electrical resistivity structure was investigated around the Atotsugawa Fault by using the magnetotelluric (MT) method. The regional geoelectrical strikes are approximately parallel to the fault in a low-frequency range. We constructed two-dimensional resistivity models across the fault using TM-mode MT responses to minimize three-dimensional effects on the modeling process. A smooth inversion algorithm was used, and the static-shifts on the apparent resistivity were corrected in the inversion process.A shallow, low resistivity zone along the fault is found from the surface to a depth of 1-2 km in the best-fit model across the high-seismicity segment of the fault. On the other hand, the corresponding low resistivity zone along the low-seismicity segment is limited to a shallower depth less than 1 km. The low resistivity zone along the Atotsugawa Fault is possibly due to fluid in the fracture zone; the segment with higher levels of seismicity may have higher fluid content in the fault zone compared with the lower seismicity segment. On a view of the crustal structure, a lateral resistivity variation in a depth range of 3-12 km is found below the fault trace in the high-seismicity segment, while a resistive layer of wide extent is found at a depth of about 5 km below the fault trace in the low-seismicity segment. The resistive layer is explained by less fluid condition and possibly characterized as high rigidity. Differences in the resistivity structures between low and high-seismicity segments of the fault suggest that the seismic gap in the central part of the Atotsugawa Fault may be interpreted as a locked segment. Thus, MT is an effective method in evaluating a cause and future activity of seismic gaps along active faults.The lower crust appears as a conductive zone beneath the low-seismicity segment, less conductive beneath the high-seismicity segment. Fluid is inferred as a preferable cause of the conductive zone in this study. It is suggested that the conductive lower crust beneath the low-seismicity segment is recognized where fluid is trapped by an impermeable layer in the upper crust. On the other hand, fluid in the lower crust may upwell to the surface along the high-seismicity segment of the fault.  相似文献   
13.
本文用遗传算法(GA)进行大地电磁测深(MT)一维模型的反演。本反演方法无需初值,不用求导数,受噪声影响小,能有效克服反演中出现的局部极值,并能给出一组解  相似文献   
14.
The Namibian margin is dominated by the late Proterozoic to early Cambrian fold belts of the Damara Orogen, which wrap around and separate the Congo and Kalahari Cratons. This mosaic of relatively ‘soft’ fold belts and ‘hard’ cratons apparently controlled the path for the opening of the South Atlantic in the early Cretaceous. The continents split along the coast-parallel fold belts of the Damara Orogen while the inland fold belt (Damara Belt) was effected by extension and widespread igneous intrusion but never developed to the rift stage. This paper is concerned with the interpretation of magnetotelluric (MT) data along a 200 km NW-SE profile across the Damara Belt in NW Namibia. The regional, two-dimensional electrical resistivity model and the induction vector data exhibit three distinctive zones: (i) a generally very resistive upper crust which is typical for the granites and metasediments of the Damara Belt, (ii) two subvertical conductors in upper to mid-crustal levels which correlate with major tectonic zone boundaries and (iii) a highly conductive middle to lower crust in the southern part of the profile. The geometry of the conductive structures could reflect a regional shear system in which upper crustal listric faults pass into a detachment zone in the middle crust. We interpret the high electrical conductivity in terms of graphite (or other forms of mineralization) enrichment along the shear planes. This zone of crustal weakness may have originated in Pre-Damara times and had probably experienced several episodes of crustal reactivation before the intrusion of basaltic dike swarms during the Cretaceous rifting and magmatism associated with the opening of the South Atlantic.  相似文献   
15.
分别用Occam法和广义逆法对兰州地区MT资料进行了一维反演,两种反演结果可相互印证,使得解释结果更为可靠。并和相应资料的二维反演结果相一致。  相似文献   
16.
针对天然大地电磁场信号在人文活动密集地区易受噪声干扰的问题,本文提出利用两个同步测点天然电磁场时间序列之间的单位脉冲响应,合成本地点受干扰时段的数据,从而去除大地电磁噪声.首先,选择高信噪比时段的数据,采用最小二乘法,估算本地点与参考点之间的单位脉冲响应,再根据卷积定律,结合参考磁场合成本地点的磁场和电场.最后用合成数据替换含噪声时段数据,实现时间域去噪.实测高信噪比数据和含噪数据的处理结果表明,该方法可以高精度合成本地点磁场与电场信号,有效去除本地点电场和磁场噪声,包括相关噪声,提高大地电磁数据质量.  相似文献   
17.
We present a concept of the hybrid finite volume–integral equation technique for solving Maxwell's equation in a quasi-static form. The divergence correction was incorporated to improve the convergence and stability of the governing linear system equations which pose a challenge on the discretization of the curl–curl Helmholtz equation. A staggered finite volume approach is applied for discretizing the system of equations on a structured mesh and solved in a secondary field technique. The bi-conjugate gradient stabilizer was utilized with block incomplete lower-upper factorization preconditioner to solve the system of equation. To obtain the electric and magnetic fields at the receivers, we use the integral Green tensor scheme. We verify the strength of our hybrid technique with benchmark models relative to other numerical algorithms. Importantly, from the tested models, our scheme was in close agreement with the semi-analytical solution. It also revealed that the use of a quasi-analytical boundary condition helps to minimize the runtime for the linear system equation. Furthermore, the integral Green tensor approach to compute at the receivers demonstrates better accuracy compared with the conventional interpolation method. This adopted technique can be applied efficiently to the inversion procedure.  相似文献   
18.
In SW Iberian Variscides, the boundary between the South Portuguese Zone (SPZ) and the Ossa Morena Zone (OMZ) corresponds to a major tectonic suture that includes the Beja Acebuches Ophiolite Complex (BAOC) and the Pulo do Lobo Antiform Terrane (PLAT). Three sub-parallel and approximately equidistant MT profiles were performed, covering a critical area of this Palaeozoic plate-tectonic boundary in Portugal; the profiles, running roughly along an NE–SW direction, are sub-perpendicular to the main Variscan tectonic features. Results of the three-dimensional (3-D) modelling of MT data allow to generate, for the first time, a 3-D electromagnetic imaging of the OMZ–SPZ boundary, which reveals different conductive and resistive domains that display morphological variations in depth and are intersected by two major sub-vertical corridors; these corridors coincide roughly with the NE–SW, Messejana strike–slip fault zone and with the WNW–ESE, Ferreira–Ficalho thrust fault zone. The distribution of the shallow resistive domains is consistent with the lithological and structural features observed and mapped, integrating the expected electrical features produced by igneous intrusions and metamorphic sequences of variable nature and age. The development in depth of these resistive domains suggests that: (1) a significant vertical displacement along an early tectonic structure, subsequently re-taken by the Messejana fault-zone in Late-Variscan times, has to be considered to explain differences in deepness of the base of the Precambrian–Cambrian metamorphic pile; (2) hidden, syn- to late-collision igneous bodies intrude the meta-sedimentary sequences of PLAT; (3) the roots of BAOC are inferred from 12 km depth onwards, forming a moderate resistive band located between two middle-crust conductive layers extended to the north (in OMZ) and to the south (in SPZ). These conductive layers overlap the Iberian Reflective Body (evidenced by the available seismic reflection data) and are interpreted as part of an important middle-crust décollement developed immediately above or coinciding with the top of a graphite-bearing granulitic basement.  相似文献   
19.
A geoelectromagnetic research was carried out in the Santa Cruz region (Santiago Island, Cabo Verde) during June 2004. The survey comprised MT soundings and VLF profiles. The main purpose of the MT profile, carried out across three important valleys associated with freshwater aquifers, was to study the tectonic structures correlated to seawater infiltration. The VLF method was used inside of the valleys for investigating shallow structures related to the aquifer contamination by seawater.Numerical modelling shows that the ocean effect is not important for MT data collected at periods shorter than 1 s. The MT data were inverted using a two-dimensional approach, to obtain the sub-superficial electrical conductivity distribution. The VLF data were processed applying the Karous–Hjelt filters to obtain the equivalent current distribution and inverted using 2-D approach. The results obtained in one of the most important valleys show anomalous current concentration/low resistivity (<20 Ω m) areas at depths greater than 40 m that may correspond to an increase in seawater content.The MT data modelling show that the deep zones beneath the valley are strongly fractured representing good pathways for seawater circulation. The depth of the conductive zones increases from south to north, suggesting a northward decreasing of the seawater infiltration effect. This observation correlates very well with in situ geochemical observations.  相似文献   
20.
Magnetotelluric (MT) investigations were carried out along a profile in the greenschist–granulite transition zone within the south Indian shield region (SISR). The profile runs over a length of 110 km from Kuppam in the north to Bommidi in the south. It covers the transition zone with 12 MT stations using a wide-band (1 kHz–1 ks) data acquisition system. The Mettur shear zone (MTSZ) forms the NE extension of Moyar–Bhavani shear zone that traverses along the transition zone. The regional geoelectric strike direction of N40°E identified from the present study is consistent with the strike direction of the MTSZ in the center of the profile. The 2-D conductivity model derived from the data display distinct high electrical resistivity character (10,000 Ω m) below the Archaean Dharwar craton and less resistive (< 3000 Ω m) under the southern granulite terrain located south of the MTSZ. The MTSZ separating the two regions is characterized by steep anomalous high conductive feature at lower crustal depths. The deep seismic sounding (DSS) study carried out along the profile shows dipping signatures on either side of the shear zone. The variation of deep electrical resistivity together with the dipping signature of reflectors indicate two distinct terrains, namely, the Archaean Dharwar Craton in the north and the Proterozoic granulite terrain towards south. They got accreted along the MTSZ, which could represent a possible collision boundary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号