首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   15篇
地球物理   172篇
地质学   2篇
天文学   7篇
综合类   4篇
自然地理   5篇
  2022年   1篇
  2019年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   6篇
  2004年   4篇
  2003年   1篇
  2001年   7篇
  2000年   35篇
  1999年   61篇
  1998年   43篇
  1997年   5篇
  1996年   3篇
  1993年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
排序方式: 共有190条查询结果,搜索用时 703 毫秒
51.
A new phenomenon was found at the polar edge of the auroral oval in the postmidnight-morning sectors: field-aligned (FA) high-energy upward electron beams in the energy range 20–40 keV at altitudes about 3 RE, accompanied by bidirectional electron FA beams of keV energy. The beam intensity often reaches more than 0.5 · 103 electrons/s · sr · keV · cm2, and the beams are observed for a relatively long time (3 102–103 s), when the satellite at the apogee moves slowly in the ILAT-MLT frame. A qualitative scenario of the acceleration mechanism is proposed, according to which the satellite is within a region of bidirectional acceleration where a stochastic FA acceleration is accomplished by waves with fluctuating FA electric field components in both directions.  相似文献   
52.
The MEMO (MEsure Multicomposante des Ondes) experiment is a part of theINTERBALL 2 wave consortium. It is connected to a total of six electric and nine magnetic independent sensors. It provides waveforms associated with the measurement of two to five components in three frequency bands: ELF (5–1000 Hz), VLF (1–20 kHz), LF (20–250 kHz). Preliminary analyses of low and high resolution data are presented. The emphasis is put on the estimation of the propagation characteristics of the observed waves. VLF hiss emissions are shown to be mainly whistler mode emissions, but other modes are present. An accurate estimation of the local plasma frequency is proposed when the low L = 0 cutoff frequency is identified. AKR emissions observed just above source regions are studied. R-X and L-O modes are found: the first at the lowest frequencies and the second at the highest. Both propagate with wave normal directions weakly oblique or quasi-parallel to the Earths magnetic field direction. Propagation characteristics are also determined for a (non-drifting) fine structure of AKR. There is no fundamental difference with structurless events. Night-side and dayside bursts of ELF electromagnetic emissions are presented. It is not clear whether the two emissions belong to the lion roar emissions or not.  相似文献   
53.
Interhemispheric contrasts in the ionospheric convection response to variations of the interplanetary magnetic field (IMF) and substorm activity are examined, for an interval observed by the Polar Anglo-American Conjugate Experiment (PACE) radar system between 1600 and 2100 MLT on 4 March 1992. Representations of the ionospheric convection pattern associated with different orientations and magnitudes of the IMF and nightside driven enhancements of the auroral electrojet are employed to illustrate a possible explanation for the contrast in convection flow response observed in radar data at nominally conjugate points. Ion drift measurements from the Defence Meteorological Satellite Program (DMSP) confirm these ionospheric convection flows to be representative for the prevailing IMF orientation and magnitude. The location of the fields of view of the PACE radars with respect to these patterns suggest that the radar backscatter observed in each hemisphere is critically influenced by the position of the ionospheric convection reversal boundary (CRB) within the radar field of view and the influence it has on the generation of the irregularities required as scattering targets by high-frequency coherent radar systems. The position of the CRB in each hemisphere is strongly controlled by the relative magnitudes of the IMF Bz and By components, and hence so is the interhemispheric contrast in the radar observations.  相似文献   
54.
Results of simultaneous TV observations of pulsating auroral patches and ELF-VLF-emissions in the morning sector carried out in Sodankylä (Finland) on February 15, 1991 are presented. Auroral pulsating activity was typical having pulsating patches with characteristic periods of about 7 s. Narrow-band hiss emissions and chorus elements at intervals of 0.3–0.4 s formed the main ELF-VLF activity in the frequency range 1.0–2.5 kHz at the same time. The analysis of auroral images with time resolution of 0.04 s allowed perfectly separate analysis of spatial and temporal variations in the auroral luminosity. Mutual correspondence between the behaviour of the luminous auroral patches and the appearance of ELF noise type hiss emissions and VLF chorus trains was found in two intervals chosen for analysis. While the hiss emissions were associated with the appearance of luminosity inside a limited area close to the zenith, the structured VLF emissions were accompanied by rapid motion of luminosity inside the area. The spatial dimension of the pulsating area was about 45–50 km and luminosity propagated inside it with velocity of about 10–12 kms. We discuss a new approach to explain the 5–15 s auroral pulsation based on the theory of flowing cyclotron maser and relaxation characteristics of ionosphere.  相似文献   
55.
The ionosphere influences magnetohydrodynamic waves in the magnetosphere by damping because of Joule heating and by varying the wave structure itself. There are different eigenvalues and eigensolutions of the three dimensional toroidal wave equation if the height integrated Pedersen conductivity exceeds a critical value, namely the wave conductance of the magnetosphere. As a result a jump in frequency can be observed in ULF pulsation records. This effect mainly occurs in regions with gradients in the Pedersen conductances, as in the auroral oval or the dawn and dusk areas. A pulsation event recorded by the geostationary GOES-6 satellite is presented. We explain the observed change in frequency as a change in the wave structure while crossing the terminator. Furthermore, selected results of numerical simulations in a dipole magnetosphere with realistic ionospheric conditions are discussed. These are in good agreement with the observational data.  相似文献   
56.
Highlights of studies of ULF waves from 1995 to early 1997 are presented. The subjects covered include (1) Pc 3–5 waves excited by sources in the solar wind, with emphasis on the role of the magnetospheric cavity in modifying the external source and establishing its own resonances, and the role of the plasmapause in magnetohydrodynamic wave propagation; (2) Pi 2 waves, with emphasis on the plasmaspheric resonances and possible alternative excitation by plasmasheet source waves; (3) the spatial structure of internally excited long-period waves, including a kinetic theory for radially confined ring current instability and groundbased multipoint observation of giant pulsations; (4) amplitude-modulated Pc 1–2 waves in the outer magnetosphere (Pc 1–2 bursts) and in the inner magnetosphere (structured Pc 1 waves or pearls); and (5) the source region of the quasi-periodic emissions. Theory and observations are compared, and controversial issues are highlighted. In addition, some future directions are suggested.  相似文献   
57.
During the analysis of archived VLF data from Indian low latitude ground stations, some discrete VLF emissions recorded at the low latitude ground station Gulmarg (geomagnetic latitude 24°26′N; geomagnetic longitude 147°09′E, L = 1.28) during moderate magnetic storm activity (Σ K P = 32, K P index varies from 4 to 6 during the observation period) on 6/7 March, 1986 are presented in this paper. The dynamic spectra of these discrete VLF emissions were observed along with tweeks and its harmonics, which is interesting and complex to explain. In most of the events the harmonic frequency of tweeks correlates with the starting frequency of harmonics of discrete emissions. In order to explain the observed features of discrete VLF emissions, we propose cyclotron resonance interaction between whistler mode wave and energetic electrons of inner radiation belt as possible generation mechanism. An attempt is also made to determine parallel energy, anisotropy and wave growth relevant to the generation process of VLF emissions.  相似文献   
58.
Line-of-sight Doppler velocities from the SuperDARN CUTLASS HF radar pair have been combined to produce the first two-dimensional vector measurements of the convection pattern throughout the ionospheric footprint of a flux transfer event (a pulsed ionospheric flow, or PIF). Very stable and moderate interplanetary magnetic field conditions, along with a preceding prolonged period of northward interplanetary magnetic field, allow a detailed study of the spatial and the temporal evolution of the ionospheric response to magnetic reconnection. The flux tube footprint is tracked for half an hour across six hours of local time in the auroral zone, from magnetic local noon to dusk. The motion of the footprint of the newly reconnected flux tube is compared with the ionospheric convection velocity. Two primary intervals in the PIFs evolution have been determined. For the first half of its lifetime in the radar field of view the phase speed of the PIF is highly variable and the mean speed is nearly twice the ionospheric convection speed. For the final half of its lifetime the phase velocity becomes much less variable and slows down to the ionospheric convection velocity. The evolution of the flux tube in the magnetosphere has been studied using magnetic field, magnetopause and magnetosheath models. The data are consistent with an interval of azimuthally propagating magnetopause reconnection, in a manner consonant with a peeling of magnetic flux from the magnetopause, followed by an interval of anti-sunward convection of reconnected flux tubes.  相似文献   
59.
We investigate the dayside auroral dynamics and ionospheric convection during an interval when the interplanetary magnetic field (IMF) had predominantly a positive Bz component (northward IMF) but varying By. Polar UVI observations of the Northern Hemisphere auroral emission indicate the existence of a region of luminosity near local noon at latitudes poleward of the dayside auroral oval, which we interpret as the ionospheric footprint of a high-latitude reconnection site. The large field-of-view afforded by the satellite-borne imager allows an unprecedented determination of the dynamics of this region, which has not previously been possible with ground-based observations. The location of the emission in latitude and magnetic local time varies in response to changes in the orientation of the IMF; the cusp MLT and the IMF By component are especially well correlated, the emission being located in the pre- or post-noon sectors for By < 0 nT or By > 0 nT, respectively. Simultaneous ground-based observations of the ionospheric plasma drift are provided by the CUTLASS Finland HF coherent radar. For an interval of IMF By 0 nT, these convection flow measurements suggest the presence of a clockwise-rotating lobe cell contained within the pre-noon dayside polar cap, with a flow reversal closely co-located with the high-latitude luminosity region. This pattern is largely consistent with recent theoretical predictions of the convection flow during northward IMF. We believe that this represents the first direct measurement of the convection flow at the imaged location of the footprint of the high-latitude reconnection site.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号