首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1463篇
  免费   340篇
  国内免费   140篇
测绘学   9篇
大气科学   49篇
地球物理   821篇
地质学   370篇
海洋学   346篇
天文学   256篇
综合类   15篇
自然地理   77篇
  2024年   4篇
  2023年   14篇
  2022年   20篇
  2021年   29篇
  2020年   34篇
  2019年   43篇
  2018年   31篇
  2017年   38篇
  2016年   46篇
  2015年   47篇
  2014年   59篇
  2013年   142篇
  2012年   35篇
  2011年   88篇
  2010年   84篇
  2009年   112篇
  2008年   150篇
  2007年   108篇
  2006年   77篇
  2005年   67篇
  2004年   64篇
  2003年   57篇
  2002年   72篇
  2001年   37篇
  2000年   54篇
  1999年   54篇
  1998年   46篇
  1997年   27篇
  1996年   47篇
  1995年   41篇
  1994年   39篇
  1993年   19篇
  1992年   31篇
  1991年   16篇
  1990年   17篇
  1989年   13篇
  1988年   20篇
  1987年   8篇
  1986年   5篇
  1985年   14篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1981年   9篇
  1980年   1篇
  1979年   2篇
  1978年   5篇
  1954年   4篇
排序方式: 共有1943条查询结果,搜索用时 15 毫秒
181.
The “paraboloid” model of Mercury’s magnetospheric magnetic field is used to determine the best-fit magnetospheric current system and internal dipole parameters from magnetic field measurements taken during the first and second MESSENGER flybys of Mercury on 14 January and 6 October 2008. Together with magnetic field measurements taken during the Mariner 10 flybys on 29 March 1974 and 16 March 1975, there exist three low-latitude traversals separated in longitude and one high-latitude encounter. From our model formulation and fitting procedure a Mercury dipole moment of 196 nT ·  (where RM is Mercury’s radius) was determined. The dipole is offset from Mercury’s center by 405 km in the northward direction. The dipole inclination to Mercury’s rotation axis is relatively small, ∼4°, with an eastern longitude of 193° for the dipole northern pole. Our model is based on the a priori assumption that the dipole position and the moment orientation and strength do not change in time. The root mean square (rms) deviation between the Mariner 10 and MESSENGER magnetic field measurements and the predictions of our model for all four flybys is 10.7 nT. For each magnetic field component the rms residual is ∼6 nT or about 1.5% of the maximum measured magnetic field, ∼400 nT. This level of agreement is possible only because the magnetospheric current system parameters have been determined separately for each flyby. The magnetospheric stand-off distance, the distance from the planet’s center to the inner edge of the tail current sheet, the tail lobe magnetic flux, and the displacement of the tail current sheet relative to the Mercury solar-magnetospheric equatorial plane have been determined independently for each flyby. The magnetic flux in the tail lobes varied from 3.8 to 5.9 MWb; the subsolar magnetopause stand-off distance from 1.28 to 1.43 RM; and the distance to the inner edge of the current sheet from 1.23 to 1.32 RM. The differences in the current systems between the first and second MESSENGER flybys are attributed to the effects of strong magnetic reconnection driven by southward interplanetary magnetic field during the latter flyby.  相似文献   
182.
The current sheet in Earth’s magnetotail often flaps, and the flapping waves could be induced propagating towards the dawn and dusk flanks, which could make the current sheet dynamic. To explore the dynamic characteristics of current sheet associated with the flapping motion holistically and provide reasonable physical interpretations, detailed direct calculation and analysis have been applied to one approximate analytic model of magnetic field in the flapping current sheet. The main results from the model demonstrate: (1) the magnetic fluctuation amplitude is attenuated from the center of current sheet to the lobe regions; The larger wave amplitude would induce the larger magnetic amplitude; (2) the curvature of magnetic field lines (MFLs), with maximum at the center of current sheet, is only dependent on the displacement Z along the south-north direction from the center of current sheet, regardless of the tilt of current sheet; (3) the half-thickness of neutral sheet, h, the minimum curvature radius of MFLs, Rcmin, and the tilt angle of current sheet, δ, satisfies h=Rcmin cos δ; (4) the gradient of magnetic strength forms a double-peak profile, and the peak value would be more intense if the local current sheet is more tilted; (5) current density j and its jy, jz components reach the extremum at the center of CS. j and jz would be more intense if the local current sheet is more tilted, but it is not the case for jy; and (6) the field-aligned component of current density mainly appears in the neutral sheet, and the sign of it would change alternatively as the flapping waves passing by. To check the validity of the model, one simulation on the virtual measurements has been made, and the results are in well consistence with actual observations of Cluster.  相似文献   
183.
Tidal currents derived from current meter measurements are compared with the output from a barotropic tidal model of the New Zealand region. For the semi‐diurnal constituents there was very good agreement for the M2 tide and good agreement for the S2 tide. For the diurnal constituents (Kl, Ol) it was found that as the amplitude of the constituents decreased so did both the model/observation agreement and the accuracy of the observed tidal ellipse parameters. Consequently it was not possible to decide whether differences arose through shortcomings in the model or in the data. However, the overall performance of the model as a prognostic tool for ocean tidal current simulation appears to be good.  相似文献   
184.
On the recent warming of the southeastern Bering Sea shelf   总被引:1,自引:0,他引:1  
During the last decade, the southeastern Bering Sea shelf has undergone a warming of 3 °C that is closely associated with a marked decrease of sea ice over the area. This shift in the physical environment of the shelf can be attributed to a combination of mechanisms, including the presence over the eastern Bering Sea shelf of a relatively mild air mass during the winter, especially from 2000 to 2005; a shorter ice season caused by a later fall transition and/or an earlier spring transition; increased flow through Unimak Pass during winter, which introduces warm Gulf of Alaska water onto the southeastern shelf; and the feedback mechanism whereby warmer ocean temperatures during the summer delay the southward advection of sea ice during winter. While the relative importance of these four mechanisms is difficult to quantify, it is evident that for sea ice to form, cold arctic winds must cool the water column. Sea ice is then formed in the polynyas during periods of cold north winds, and this ice is advected southward over the eastern shelf. The other three mechanisms can modify ice formation and melt, and hence its extent. In combination, these four mechanisms have served to temporally and spatially limit ice during the 5-year period (2001–2005). Warming of the eastern Bering Sea shelf could have profound influences on the ecosystem of the Bering Sea—from modification of the timing of the spring phytoplankton bloom to the northward advance of subarctic species and the northward retreat of arctic species.  相似文献   
185.
Using nine years of solar wind plasma and magnetic field data from the Wind mission, we investigated the characteristics of both magnetic clouds (MCs) and magnetic cloud-like structures (MCLs) during 1995 – 2003. A MCL structure is an event that is identified by an automatic scheme (Lepping, Wu, and Berdichevsky, Ann. Geophys. 23, 2687, 2005) with the same criteria as for a MC, but it is not usually identifiable as a flux rope by using the MC (Burlaga et al., J. Geophys. Res. 86, 6673, 1981) fitting model developed by Lepping, Jones, and Burlaga (Geophys. Res. Lett. 95(11), 957, 1990). The average occurrence rate is 9.5 for MCs and 13.6 for MCLs per year for the overall period of interest, and there were 82 MCs and 122 MCLs identified during this period. The characteristics of MCs and MCL structures are as follows: (1) The average duration, Δt, of MCs is 21.1 h, which is 40% longer than that for MCLs (Δt=15 h); (2) the average (minimum B z found in MC/MCL measured in geocentric solar ecliptic coordinates) is −10.2 nT for MCs and −6 nT for MCLs; (3) the average Dstmin  (minimum Dst caused by MCs/MCLs) is −82 nT for MCs and −37 nT for MCLs; (4) the average solar wind velocity is 453 km s−1 for MCs and 413 km s−1 for MCLs; (5) the average thermal speed is 24.6 km s−1 for MCs and 27.7 km s−1 for MCLs; (6) the average magnetic field intensity is 12.7 nT for MCs and 9.8 nT for MCLs; (7) the average solar wind density is 9.4 cm−3 for MCs and 6.3 cm−3 for MCLs; and (8) a MC is one of the most important interplanetary structures capable of causing severe geomagnetic storms. The longer duration, more intense magnetic field and higher solar wind speed of MCs, compared to those properties of the MCLs, are very likely the major reasons for MCs generally causing more severe geomagnetic storms than MCLs. But the fact that a MC is an important interplanetary structure with respect to geomagnetic storms is not new (e.g., Zhang and Burlaga, J. Geophys. Res. 93, 2511, 1988; Bothmer, ESA SP-535, 419, 2003).  相似文献   
186.
Turbidity currents in the ocean are driven by suspended sediment. Yet results from surveys of the modern sea floor and turbidite outcrops indicate that they are capable of transporting as bedload and depositing particles as coarse as cobble sizes. While bedload cannot drive turbidity currents, it can strongly influence the nature of the deposits they emplace. This paper reports on the first set of experiments which focus on bedload transport of granular material by density underflows. These underflows include saline density flows, hybrid saline/turbidity currents and a pure turbidity current. The use of dissolved salt is a surrogate for suspended mud which is so fine that it does not settle out readily. Thus, all the currents can be considered to be model turbidity currents. The data cover four bed conditions: plane bed, dunes, upstream‐migrating antidunes and downstream‐migrating antidunes. The bedload transport relation obtained from the data is very similar to those obtained for open‐channel flows and, in fact, is fitted well by an existing relation determined for open‐channel flows. In the case of dunes and downstream‐migrating antidunes, for which flow separation on the lee sides was observed, form drag falls in a range that is similar to that due to dunes in sand‐bed rivers. This form drag can be removed from the total bed shear stress using an existing relation developed for rivers. Once this form drag is subtracted, the bedload data for these cases collapse to follow the same relation as for plane beds and upstream‐migrating antidunes, for which no flow separation was observed. A relation for flow resistance developed for open‐channel flows agrees well with the data when adapted to density underflows. Comparison of the data with a regime diagram for field‐scale sand‐bed rivers at bankfull flow and field‐scale measurements of turbidity currents at Monterey Submarine Canyon, together with Shields number and densimetric Froude number similarity analyses, provide strong evidence that the experimental relations apply at field scale as well.  相似文献   
187.
The wave Coriolis-Stokes-Force-modified ocean momentum equations are reviewed in this paper and the wave Stokes transport is pointed out to be part of the ocean circulations. Using the European Centre for Medium-Range Weather Forecasts 40-year reanalysis data (ERA-40 data) and the Simple Ocean Data Assimilation (SODA) version 2.2.4 data, the magnitude of this transport is compared with that of wind-driven Sverdrup transport and a 5-to-10-precent contribution by the wave Stokes transport is found. Both transports are stronger in boreal winter than in summers. The wave effect can be either contribution or cancellation in different seasons. Examination with Kuroshio transport verifies similar seasonal variations. The clarification of the efficient wave boundary condition helps to understand the role of waves in mass transport. It acts as surface wind stress and can be functional down to the bottom of the ageostrophic layer. The pumping velocities resulting from wave-induced stress are zonally distributed and are significant in relatively high latitudes. Further work will focus on the model performance of the wave-stress-changed-boundary and the role of swells in the eastern part of the oceans.  相似文献   
188.
海岸裂流的研究进展及其展望   总被引:3,自引:2,他引:1  
王彦  邹志利 《海洋学报》2014,36(5):170-176
近岸裂流是海岸工程和海岸演变中非常重要的动力因素,对污染物排放和游泳者安全有很重要的意义。详细回顾了国内外对海岸裂流方面的研究与进展,具体包括对裂流的实验室实验和现场观测测量技术、理论分析、裂流的形成机理以及数值模拟等方面,概述了该领域的研究现状与发展趋势。总结了已有研究存在的不足,提出了需要进一步研究的课题。  相似文献   
189.
The Pelotas Basin is the classical example of a volcanic passive margin displaying large wedges of seaward-dipping reflectors (SDR). The SDR fill entirely its rifts throughout the basin, characterizing the abundant syn-rift magmatism (133–113 Ma). The Paraná–Etendeka Large Igneous Province (LIP), adjacent to west, constituted the pre-rift magmatism (134–132 Ma). The interpretation of ultra-deep seismic lines showed a very different geology from the adjacent Santos, Campos and Espírito Santo Basins, which constitute examples of magma-poor passive margins. Besides displaying rifts totally filled by volcanic rocks, diverse continental crustal domains were defined in the Pelotas Basin, such as an outer domain, probably constituted by highly stretched and permeated continental igneous crust, and a highly reflective lower crust probably reflecting underplating.The analysis of rifting in this portion of the South Atlantic is based on seismic interpretation and on the distribution of regional linear magnetic anomalies. The lateral accretion of SDR to the east towards the future site of the breakup and the temporal relationship between their rift and sag geometries allows the reconstitution of the evolution of rifting in the basin. Breakup propagated from south to north in three stages (130–127.5; 127.5–125; 125–113 Ma) physically separated by oceanic fracture zones (FZ). The width of the stretched, thinned and heavily intruded continental crust also showed a three-stage increase in the same direction and at the same FZ. Consequently, the Continental-Oceanic Boundary (COB) shows three marked shifts, from west to east, from south to north, resulting into rift to margin segmentation. Rifting also propagated from west to east, in the direction of the final breakup, in each of the three segments defined. The importance of the Paraná–Etendeka LIP upon the overall history of rupturing and breakup of Western Gondwanaland seems to have been restricted in time and in space only to the Pelotas Basin.  相似文献   
190.
Accurate porosity and permeability evaluation of rock formations is critical to estimate the quality and resource potential of a reservoir. In addition to directly measure the porosity and pore size distribution, low field Nuclear Magnetic Resonance (NMR) is able to measure the effective porosity and estimate the in-situ formation permeability, though its robustness is arguable and requires calibrations on cores with specific lithologies.The Mesozoic formations of the central Perth Basin (Western Australia) host hot sedimentary aquifers and recently became key targets for geothermal heat extraction. A collection of cores was retrieved from three wells intersecting these units. The characterisation of their flow properties complements the current evaluation of the Perth Basin by adding new data on effective porosity, pore size distribution, pore geometry and calibration of predictive models for the permeability according to a comprehensive facies classification scheme.This study highlights the consistency of the NMR approach when compared to conventional helium injection method. Most favourable lithologies for well production correspond to very coarse to fine sandstones of fluvial channel fill with porosities >15% and permeabilities >>1 mD. Similarly, these facies exhibit (i) the highest effective porosities, (ii) the highest pore space to pore throat ratio, and (iii) the lowest contribution of clay bound water. These aspects confirm the importance of clay occurrence in the assessment of the flow efficiency of a formation.The Yarragadee Formation presents the best reservoir quality regarding its porosity and permeability, even though high discrepancies occur locally owing to the great variability of lithofacies encountered. The scattered values observed for the Lesueur Sandstone are likely to be due to the basin architecture and fault system which generate different mechanical compaction and secondary cementation. Given an adequate facies analysis, the NMR method represents a powerful tool to estimate the flow efficiency of a reservoir.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号