首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   37篇
  国内免费   73篇
测绘学   2篇
大气科学   157篇
地球物理   3篇
地质学   8篇
海洋学   1篇
综合类   2篇
自然地理   2篇
  2024年   1篇
  2023年   4篇
  2021年   3篇
  2020年   11篇
  2019年   9篇
  2018年   10篇
  2017年   8篇
  2016年   5篇
  2015年   9篇
  2014年   6篇
  2013年   11篇
  2012年   11篇
  2011年   11篇
  2010年   7篇
  2009年   6篇
  2008年   9篇
  2007年   12篇
  2006年   6篇
  2005年   12篇
  2004年   8篇
  2003年   6篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1995年   2篇
  1992年   1篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
61.
利用"淮河流域东北部一次异常特大暴雨的数值模拟研究Ⅰ"的数值模拟结果,分析了几种不稳定对流涡度矢量(CVV)与中尺度深湿对流系统之间的关系,并分析了不稳定条件的增强和维持机制,结果表明:(1)中低层对流不稳定是深湿对流系统发生的先决条件,由于低层存在辐合,使得周围湿空气向暴雨区集中,对流单体在暴雨区汇聚,且发生合并增强,台风左前方向暴雨区输送对流不稳定能量等,是使得暴雨区对流不稳定重新建立和加强的重要机制.(2)深湿对流系统的中低层不仅有对流不稳定,而且还有斜压不稳定、条件对称不稳定,而中高层必须有湿斜压不稳定和条件对称不稳定.深湿对流系统中高层西(北)侧为负MPV2柱,东(南)侧为正MPV2柱;(3)深湿对流系统中惯性不稳定柱与惯性稳定柱相间分布,西(南)侧为负CVV柱,东(北)侧为正CVV柱,负CVV柱对深湿对流起激发作用;(4)惯性不稳定、湿倾斜不稳定和条件不稳定产生强的倾斜式对流,而强的倾斜式上升运动加强了深对流系统北侧高层的南风分量,因深对流系统南侧低层出现补偿性下沉气流,因而低层南风加强,高低空急流中心的加强会进一步加强对流的发展,使得惯性不稳定、湿倾斜不稳定及条件不稳定增强和维持,这是一个正反馈过程.(5)在暴雨中心以东维持一顺切变环流,同时暴雨中心的浅对流单体吸收来自南方的水汽和不稳定能量,中尺度辐合线与β中尺度涡旋对对流单体起组织和增强作用,对流系统中辐合、辐散柱相间分布,强散度柱与强涡柱互伴互耦,都有利于形成中尺度深湿对流系统,使不稳定向纵深方向发展,从而使得不稳定得到增强和维持.  相似文献   
62.
我国中东部地区夏季MCS统计分析   总被引:8,自引:1,他引:8  
曾波  谌芸  肖天贵 《气象》2013,39(2):180-185
目前较详细的中尺度对流系统(MCS)分类普查研究还较少.文章使用我国风云2号地球静止卫星红外数字图像资料分类普查了2008-2010年夏季(6-8月)我国中东部地区(27°~40°N、110°~124°E)中尺度对流系统时空特征.根据尺度大小将MCS分类为α中尺度对流系统(MαCS)和β中尺度对流系统(MβCS),又根据MCS形状将MαCS分类为中尺度对流复合体(MCC)和持续拉长状对流系统(PECS),MβCS分类为β中尺度对流复合体(MβCCS)和β尺度持续拉长状对流系统(MβECS).3年夏季共识别了208个MCS,其中68个MαCS和140个MβCS,拉长状系统居多,占MCS总数79.3%,这表明拉长状的MCS是该区域夏季的主要对流系统.从月际变化来看,7月最多,8月次之,6月最少.大部分MCS移动路径自西向东,少数为自南向北或自北向南的移动路径,自东向西的路径极少.MCS形成高峰时段为9-10 UTC(世界时),成熟高峰时段为10-11 UTC,消散高峰时段为12-13 UTC,生命史约为6.5h.MαCS从形成到成熟需3~4 h,成熟至消散需4~5 h;MβCS发展和减弱时间相当,为2~3 h.  相似文献   
63.
中尺度对流系统对台风“风神”移动路径影响的研究   总被引:2,自引:1,他引:2  
沈新勇  毕明玉  张玲  刘佳 《气象学报》2012,70(6):1173-1187
通过卫星资料分析台风“风神”路径预报之所以出现较大的偏差,可能是由于“风神”西侧中尺度对流系统引起的.为了更好地研究中尺度对流系统对台风的影响,利用中尺度非静力数值模式WRF对“风神”的移动过程开展了高分辨率数值模拟,模拟采用双重嵌套,最高分辨率6 km,共积分78 h.利用模拟资料,采用PV-ω分部位涡反演方法定量分析了台风外围中尺度对流系统对台风运动的影响,认为P V-ω分部位涡反演方法能够很好地分离出台风外围中尺度对流系统,其对台风引导气流的贡献可达到20%左右.为验证中尺度对流系统的影响,用模式积分的方法,通过3组模拟实验,发现中尺度对流系统使台风路径偏左或偏右可能随着环境引导气流方向而改变,而在此个例中的中尺度对流系统会使得台风向西和向极移动得更远.对比研究了不同中尺度对流系统对台风的影响,发现在“风神”移动过程中,中尺度对流系统之所以引起较大影响是因为中尺度对流系统与台风相对位置变化不大所致.  相似文献   
64.
陈永仁  李跃清 《气象》2013,39(7):848-860
利用FY2D卫星云图云顶亮温(TBB)资料、雷达回波产品和常规气象观测资料、地面自动站降水资料及NCEP 1°×1°逐6h再分析资料,对2012年7月21-22日四川暴雨中的中尺度对流系统(MCS)特征及其对短时强降雨影响进行分析,结果表明:(1)这次暴雨过程在21日00-06时和21日21时至22日03时有两个明显的6h短时强降雨阶段.第一阶段中,500 hPa高原涡与700 hPa低涡切变线、低空急流作用,引发盆地西部短时强降雨;第二阶段中,500 hPa高原涡与700 hPa西 南涡作用,引发盆地南部短时强降雨.(2)短时强降雨通常由MCS中的深对流特征造成,水平尺度多为β中尺度或更小的γ中尺度系统,具有云顶亮温低、雷达反射率因子大和垂直累积液态水含量高等特点.(3)探空资料分析表明,MCS增长初期,大气不稳定能量高,存在风垂直切变,在低层冷暖平流交汇明显且温度梯度大的区域,有利于激发MCS生成,另外高低层系统作用产生的深厚正涡度对其发生发展亦具有重要作用.在演变过程中MCS具有低层正涡度、负散度,高层负涡度、正散度的垂直结构,且上升速度明显,这种结构特征可能是MCS发展维持的重要因素,亦是产生强降雨的机制之一.  相似文献   
65.
上海98.7.23大暴雨环境场及多普勒雷达资料的分析   总被引:6,自引:1,他引:5  
姚祖庆  杨引明 《气象》1999,25(5):28-33
应用天气图,卫星云图,探空资料,并重点应用多为勒雷达资料综合分析了1998年7月23日上海大暴雨过程,指出在有利的大尺度环境条件下MCC下风方诱生出MCS,导致上海产生大暴雨,多普勒雷达基本反射率,径向风场及垂直风廓线资料在暴雨发生前数小时就监测到中尺度切变,中尺度涡旋等触发机制的发生,发展,它们与强降水回波的发展,加强,移动和合并息息相关。  相似文献   
66.
1. Introduction China is located in the East Asian monsoon re- gion. Every year's weather and climate in this region is deeply affected by the monsoon activities. Es- pecially, during flooding season (May to September), the summer monsoon controls large-scale precipitation patterns, the movement of seasonal rain belt and oc- currence of drought/flood disasters. The Asian mon- soon can be divided into two systems (Tao and Chen, 1987). As a major component and its unique location, the South …  相似文献   
67.
68.
2012年7月下旬内蒙古中部出现罕见的极端降水事件(简称"7·27"暴雨)。利用NCEP再分析资料、常规观测和精细化监测等资料分析了"7·27"暴雨成因。结果表明:(1)贝加尔湖低涡异于常年。巴尔喀什湖到鄂霍茨克海为阻塞高压,其底部横槽加深生成贝加尔湖低涡。低涡内有冷空气活动,在对流层低层及地面激发出低涡和气旋。(2)该过程的中尺度特征明显。地面中尺度切变线不断新生、稳定维持,形成多个中尺度雨带。高空β中尺度对流云团不断新生、合并加强,形成对流复合体M CS。河套西北部、河套南部、锡林郭勒盟中西部三个暴雨区均是中尺度对流复合体M CS发展的结果。(3)垂直方向上,暴雨发生前到暴雨期从地面至700 h Pa的大气比湿达10~22 g·kg-1,且850~700 h Pa水汽垂直输送达到最强;水平方向上,南风风力辐合,末端到达45°N以北,河套南部地区为"水汽汇"。(4)对流层高层大气涡旋运动是该过程的直接诱因。大气涡旋运动由200 h Pa向700 h Pa传播,正涡度平流在700 h Pa到200 h Pa随高度增加,高层水平辐散、低层补偿辐合,大气强迫上升产生暴雨。(5)对流层中层持续"干侵入",低层持续的暖湿输送,大气不稳定能量不断重建,这是极端暴雨过程的热力机制。(6)随着全球气候变暖,亚洲夏季风加强,来自孟加拉湾和南海的水汽向东亚副热带地区输送加强,水汽输送进一步向北扩展到我国华北内陆地区,是"7·27"暴雨过程的重要原因。  相似文献   
69.
四川盆地东北部中尺度MCS暴雨过程分析   总被引:2,自引:0,他引:2  
2009年6月19日凌晨至23时四川盆地东北部生了一次由MCS单体带来的大暴雨天气过程。本文主要对该大暴雨过程的天气尺度环流背景、中尺度系统特征和地形作用等进行了分析。结果显示:(1)高空低槽和地面冷锋位于四川盆地北部为此次暴雨发生提供了有利的大尺度背景;(2)卫星云图及多普勒雷达回波表现出本次暴雨过程的直接系统是中尺度MCS单体;(3)能量、动力及水汽等的时空分布有利于MCS在四川盆地东北部产生;(4)非平衡值显示在MCS发展前几个小时其附近区域的大气已由平衡状态转为较强的非平衡状态,而在暴雨最强时刻,大气的非平衡性减弱并逐渐转为的准平衡状态;(5)大巴山地形抬升垂直速度对大暴雨的发生有促进作用。  相似文献   
70.
一次西南低涡特大暴雨的中尺度对流云团特征   总被引:6,自引:1,他引:5  
针对2007年7月8~10日四川盆地南部的特大暴雨天气过程,利用逐小时红外云顶黑体亮度温度结合地面加密雨量资料对其进行了对比分析。分析指出此次特大暴雨是由西南低涡内几个中尺度对流云团连续生消造成的,在其开始阶段有一中尺度对流复合体沿基本气流方向强烈发展,此阶段云团虽发展旺盛,但由于雨团随系统移动较快,并未造成洪灾。此云团减弱后,低涡环流仍维持并少动,又依次触发了3个中尺度对流的生成,这3个中尺度对流云团逆基本气流向SSW方向缓慢移动,造成的降水落区集中,中心雨强大,持续时间长,由此导致了暴雨洪涝的产生。强降水位置对于前向传播系统,一是在其发展的前端,二是在冷云中心的略偏后的位置,最大雨强出现在云团成熟之前发展最剧烈时,而后向传播的低涡云团强降水主要在冷云中心附近,最大雨强出现在云团发展最旺盛(冷云中心TBB最低)时。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号