首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   523篇
  免费   72篇
  国内免费   17篇
测绘学   10篇
大气科学   10篇
地球物理   292篇
地质学   137篇
海洋学   50篇
天文学   1篇
综合类   14篇
自然地理   98篇
  2024年   4篇
  2023年   7篇
  2022年   10篇
  2021年   20篇
  2020年   26篇
  2019年   25篇
  2018年   17篇
  2017年   21篇
  2016年   22篇
  2015年   23篇
  2014年   25篇
  2013年   49篇
  2012年   31篇
  2011年   21篇
  2010年   16篇
  2009年   27篇
  2008年   27篇
  2007年   27篇
  2006年   26篇
  2005年   23篇
  2004年   17篇
  2003年   20篇
  2002年   12篇
  2001年   15篇
  2000年   10篇
  1999年   4篇
  1998年   10篇
  1997年   15篇
  1996年   5篇
  1995年   6篇
  1994年   8篇
  1993年   6篇
  1992年   7篇
  1991年   4篇
  1990年   6篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1976年   1篇
排序方式: 共有612条查询结果,搜索用时 38 毫秒
61.
Bo Wang  Yi-Jun Xu 《水文研究》2020,34(13):2864-2877
Bed material transport at river bifurcations is crucial for channel stability and downstream geomorphic dynamics. However, measurements of bed material transport at bifurcations of large alluvial rivers are difficult to make, and standard estimates based on the assumption of proportional partitioning of flow and bedload transport at bifurcations may be erroneous. In this study, we employed a combined approach based on observed topographic change (erosion/deposition) and bed material transport predicted from a one-dimensional model to investigate bed material fluxes near the engineering-controlled Mississippi-Atchafalaya River diversion, which is of great importance to sediment distribution and delivery to Louisiana's coast. Yang's (1973) sediment transport equation was utilized to estimate daily bed material loads upstream, downstream, and through the diversion during 2004–2013. Bathymetric changes in these channels were assessed with single beam data collected in 2004 and 2013. Results show that over the study period, 24% of the Mississippi River flow was diverted into the Atchafalaya River, while the rest remained in the mainstem Mississippi. Upstream of the diversion, the bed material yield was predicted to be 201 million metric tons (MT), of which approximately 35 MT (i.e., 17%) passed through the bifurcation channel to the Atchafalaya River. The findings from this study reveal that in the mainstem Mississippi, the percentage of bed material diversion (83%) is larger than the percentage of flow diversion (76%); Conversely, the diversion channel receives a disproportionate amount of flow (24%) relative to bed material supply (17%). Consequently, severe bed scouring occurred in the controlled Outflow Channel to the Atchafalaya River, while riverbed aggradation progressed in the mainstem Mississippi downstream of the diversion structures, implying reduced flow capacity and potential risk of a high backwater during megafloods. The study demonstrates that Yang's sediment transport equation provides plausible results of bed material fluxes for a highly complicated large river diversion, and that integration of the sediment transport equation with observed morphological changes in riverbed is a valuable approach to investigate sediment dynamics at controlled river bifurcations.  相似文献   
62.
Detailed knowledge of the flood period of Arctic rivers remains one of the few factors impeding rigorous prediction of the effect of climate change on carbon and related element fluxes from the land to the Arctic Ocean. In order to test the temporal and spatial variability of element concentration in the Ob River (western Siberia) water during flood period and to quantify the contribution of spring flood period to the annual element export, we sampled the main channel year round in 2014–2017 for dissolved C, major, and trace element concentrations. We revealed high stability (approximately ≤10% relative variation) of dissolved C, major, and trace element concentrations in the Ob River during spring flood period over a 1‐km section of the river channel and over 3 days continuous monitoring (3‐hr frequency). We identified two groups of elements with contrasting relationship to discharge: (a) DIC and soluble elements (Cl, SO4, Li, B, Na, Mg, Ca, P, V, Cr, Mn, As, Rb, Sr, Mo, Ba, W, and U) negatively correlated (p < 0.05) with discharge and exhibited minimal concentrations during spring flood and autumn high flow and (b) DOC and particle‐reactive elements (Al, Fe, Ti, Y, Zr, Nb, Cs, REEs, Hf, Tl, Pb, and Th), some nutrients (K), and metalloids (Ge, Sb, and Te), positively correlated (p < 0.05) with discharge and showed the highest concentrations during spring flood. We attribute the decreased concentration of soluble elements with discharge to dilution by groundwater feeding and increased concentration of DOC and particle‐reactive metals with discharge to leaching from surface soil, plant litter, and suspended particles. Overall, the present study provides first‐order assessment of fluxes of major and trace elements in the middle course of the Ob River, reveals their high temporal and spatial stability, and characterizes the mechanism of river water chemical composition acquisition.  相似文献   
63.
Geomorphological diversity is part of geodiversity. Study and evaluation of geodiversity, including geomorphological diversity, is often conducted in uplands and mountains, despite the fact that lowland areas are of equal importance. This paper evaluates geomorphological diversity in a small area of the Polish Lowland, using a variety of methods that have been applied in recent times for evaluating geodiversity, and presents the results on maps. By comparing these maps and analyzing the correlation coefficients of the results obtained, it was possible to identify the two methods that were best suited to indicating areas with the greatest geomorphological diversity in the lowlands. These two methods are least affected by the choice of elementary fields and data classification methods applied. The study identified the two areas with the greatest relief diversity and showed that they distinctly differ from one another. They demonstrate the major influence of processes, not only on the topographic parameters and landform types, but above all on identifying and defining total geomorphological diversity. These methods, which can be used to identify the areas with the greatest total geomorphological diversity, could readily be used in applied studies relating to abiotic ecosystem services and landscape management.  相似文献   
64.
A method is described for assessing the strength of evidence for differences in the trends in chemical concentrations in stream water between catchments. A smoothing spline technique is used to model changes in water quality as a result of changes in flow rates, seasonal effects and an underlying trend. The method involves fitting the model twice, once with the underlying trends constrained to be identical for each river and once with the trends unconstrained. Statistical properties are assessed by simulation methods that allow for the autocorrelation in the residuals from the unconstrained fit. The method is applied to data from two streams in the Balquhidder catchments in the Highlands of Scotland and to data from the Dee, Don and Ythan rivers in the north‐east of Scotland. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
65.
河道入湖污染物量计算精度分析   总被引:1,自引:0,他引:1  
马倩  冯昕 《湖泊科学》2012,24(5):663-666
入湖污染物量计算精度的高低决定入湖污染物量分析结果的客观性和准确性.本文以太湖为例,分析2010年环太湖河道入湖污染物量、时空分布情况及多年环太湖河道入湖染污物量变化情势.在此基础上,使用现在已有监测条件分析时段内每日水量水质监测数据计算逐日入湖污染物量时段累积值,并以此作为现有分析计算河道入湖污染物量的最高计算精度值.通过设定不同监测方案、采用不同计算方法分析河道入湖污染物量及其计算精度,认为现有分析计算的河道入湖污染物量已是每日河道水量水质同步监测下河道入湖污染物量的80%左右.针对河道入湖污染物量计算精度的分析可为制定科学的河道入湖污染量监测方案、提高河道入湖污染物量计算精度提供技术支撑.  相似文献   
66.
巢湖四条入湖河流硝态氮污染来源的氮稳定同位素解析   总被引:6,自引:1,他引:5  
采用氮稳定同位素技术对巢湖四条主要污染输入河流(南淝河、十五里河、派河和双桥河)的氮污染状况和硝态氮来源进行研究.结果表明,巢湖四条入湖河流氮污染最严重的是十五里河,其次是南淝河和派河,双桥河的污染相对较轻.硝态氮的稳定同位素分析结果表明,巢湖四条入湖河流的硝态氮污染物在季节上受到不同因子的影响.十五里河和南淝河的硝态氮污染主要来源于城市生活污水和工业废水;派河的硝态氮污染在冬季主要来源于工业废水,春季来源于农业面源,而在夏季主要受到雨水的影响;双桥河的硝态氮污染冬、春季主要来源于农业面源,夏季主要受雨水的影响.此外本研究结果还表明巢湖四条主要入湖河流的氮污染源主要为铵态氮,因此今后要对铵态氮的来源进行同位素示踪.  相似文献   
67.
Active deposition across the floodplains of large rivers arises through a variety of processes; collectively these are here termed ‘spillage sedimentation’. Three groups of 11 spillage sedimentation styles are identified and their formative processes described. Form presences on large river floodplains show different combinations of active spillage styles. Only some large floodplains have prominent levees; some have coarse splays; many have accessory channel dispersion and reworking, while still‐water sedimentation in lacustrine environments dominates some lower reaches. Infills are also commonly funnelled into prior, and often linear, negative relief forms relating to former migration within the mainstream channel belt. Shuttle Radar Topography Mission (SRTM) and Landsat 8 data are used to map spillage form types and coverage along a 1700 km reach of the Amazon that has an active floodplain width of up to 110 km with a systematic character transformation down‐valley. Spillage forms associated directly with mainstream processes rarely account for more than 5% of the floodplain deposits. There is a marked decrease in floodplain point bar complexes (PBC) over 1700 km downstream (from 34% to 5%), and an increase in the prevalence of large water bodies (2% to 37%) and accompanying internal crevasses and deltas (0% to 5%). Spillage sedimentation is likely within the negative relief associated with these forms, depending on mainstream sediment‐laden floodwater inputs. Spillage style dominance depends on the balance between sediment loadings, hydrological sequencing, and morphological opportunity. Down‐river form sequences are likely to follow gradient change, prior up‐river sediment sequestration and the altered nature of spilled loads, but also crucially, local floodplain relief and incident water levels and velocities at spillage times. Considering style distribution quantitatively, as a spatially distributed set of identifiable forms, emphasizes the global variety to spillage phenomena along and between large rivers. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
68.
Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of in‐stream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates with wood load; the residual volume of pools created in association with wood correlates inversely with drainage area; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but the analyses suggest that sediment volume correlates positively with drainage area and wood volume. The form of sediment storage in relation to wood appears to change downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Pool volume correlates positively with wood volume and negatively with channel gradient. Sediment volume correlates well with beaver pond area. More abundant in‐stream wood and beaver populations present historically equated to greater sediment storage within river corridors and greater residual pool volume. One implication of these changes is that protecting and re‐introducing wood and beavers can be used to restore rivers. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
69.
How rock resistance or erodibility affects fluvial landforms and processes is an outstanding question in geomorphology that has recently garnered attention owing to the recognition that the erosion rates of bedrock channels largely set the pace of landscape evolution. In this work, we evaluate valley width, terrace distribution, and bedload provenance in terms of reach scale variation in lithology in the study reach and discuss the implications for landscape evolution in a catchment with relatively flat‐lying stratigraphy and very little uplift. A reach of the Buffalo National River in Arkansas was partitioned into lithologic reaches and the mechanical and chemical resistance of the main lithologies making up the catchment was measured. Valley width and the spatial distribution of terraces were compared among the different lithologic reaches. The surface grain size and provenance of coarse (2–90 mm) sediment of both modern gravel bars and older terrace deposits that make up the former bedload were measured and defined. The results demonstrate a strong impact of lithology upon valley width, terrace distribution, and bedload provenance and therefore, upon landscape evolution processes. Channel down‐cutting through different lithologies creates variable patterns of resistance across catchments and continents. Particularly in post‐tectonic and non‐tectonic landscapes, the variation in resistance that arises from the exhumation of different rocks in channel longitudinal profiles can impact local base levels, initiating responses that can be propagated through channel networks. The rate at which that response is transmitted through channels is potentially amplified and/or mitigated by differences between the resistance of channel beds and bedload sediment loads. In the study reach, variation in lithologic resistance influences the prevalence of lateral and vertical processes, thus producing a spatial pattern of terraces that reflects rock type rather than climate, regional base level change, or hydrologic variability. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
70.
The Gediz (Ala?ehir) Graben is located in the highly tectonically active and seismogenic region of Western Turkey. The rivers upstream of the normal fault‐bounded graben each contain a non‐lithologic knickpoint, including those that drain through inferred fault segment boundaries. Knickpoint heights measured vertically from the fault scale with footwall relief and documented fault throw (vertical displacement). Consequently, we deduce these knickpoints were initiated by an increase in slip rate on the basin‐bounding fault, driven by linkage of the three main fault segments of the high‐angle graben bounding fault array. Fault interaction theory and ratios of channel steepness suggest that the slip rate enhancement factor on linkage was a factor of 3. We combine this information with geomorphic and structural constraints to estimate that linkage took place between 0.6 Ma and 1 Ma. Calculated pre‐ and post‐linkage throw rates are 0.6 and 2 mm/yr respectively. Maximum knickpoint retreat rates upstream of the faults range from 4.5 to 28 mm/yr, faster than for similar catchments upstream of normal faults in the Central Apennines and the Hatay Graben of Turkey, and implying a fluvial landscape response time of 1.6 to 2.7 Myr. We explore the relative controls of drainage area and precipitation on these retreat rates, and conclude that while climate variation and fault throw rate partially explain the variations seen, lithology remains a potentially important but poorly characterised variable. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号