首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2417篇
  免费   687篇
  国内免费   283篇
测绘学   22篇
大气科学   20篇
地球物理   1429篇
地质学   1523篇
海洋学   141篇
天文学   2篇
综合类   70篇
自然地理   180篇
  2024年   2篇
  2023年   12篇
  2022年   50篇
  2021年   60篇
  2020年   78篇
  2019年   112篇
  2018年   109篇
  2017年   122篇
  2016年   144篇
  2015年   117篇
  2014年   192篇
  2013年   221篇
  2012年   144篇
  2011年   168篇
  2010年   94篇
  2009年   211篇
  2008年   189篇
  2007年   135篇
  2006年   139篇
  2005年   99篇
  2004年   96篇
  2003年   90篇
  2002年   76篇
  2001年   71篇
  2000年   77篇
  1999年   58篇
  1998年   55篇
  1997年   53篇
  1996年   63篇
  1995年   74篇
  1994年   67篇
  1993年   49篇
  1992年   30篇
  1991年   26篇
  1990年   19篇
  1989年   13篇
  1988年   18篇
  1987年   9篇
  1986年   7篇
  1984年   10篇
  1983年   6篇
  1981年   1篇
  1979年   12篇
  1978年   5篇
  1977年   2篇
  1954年   2篇
排序方式: 共有3387条查询结果,搜索用时 15 毫秒
81.
内蒙古大青山地区侏罗纪盆地中发育有断层相关褶皱,有十分清晰的断层传播褶皱,断层转折褶皱等构造样式。断层相关褶皱轴向呈东西向展布,形成褶皱的地层是早侏罗世右拐群煤系地层,表明该褶皱至少在煤层形成后,受南北向挤压应力作用形成。研究这一构造样式,对这一地区的推覆构造、盆山耦合研究具有重要地质意义。  相似文献   
82.
We use coseismic GPS data from the 1999 Chi-Chi, Taiwan earthquake to estimate the subsurface shape of the Chelungpu fault that ruptured during the earthquake. Studies prior to the earthquake suggest a ramp–décollement geometry for the Chelungpu fault, yet many finite source inversions using GPS and seismic data assume slip occurred on the down-dip extension of the Chelungpu ramp, rather than on a sub-horizontal décollement. We test whether slip occurred on the décollement or the down-dip extension of the ramp using well-established methods of inverting GPS data for geometry and slip on faults represented as elastic dislocations. We find that a significant portion of the coseismic slip did indeed occur on a sub-horizontal décollement located at 8 km depth. The slip on the décollement contributes 21% of the total modeled moment release. We estimate the fault geometry assuming several different models for the distribution of elastic properties in the earth: homogeneous, layered, and layered with lateral material contrast across the fault. It is shown, however, that heterogeneity has little influence on our estimated fault geometry. We also investigate several competing interpretations of deformation within the E/W trending rupture zone at the northern end of the 1999 ground ruptures. We demonstrate that the GPS data require a 22- to 35-km-long lateral ramp at the northern end, contradicting other investigations that propose deformation is concentrated within 10 km of the Chelungpu fault. Lastly, we propose a simple tectonic model for the development of the lateral ramp.  相似文献   
83.
84.
In southern Turkey ongoing differential impingement of Arabia into the weak Anatolian collisional collage resulting from subduction of the Neotethyan Ocean has produced one of the most complex crustal interactions along the Alpine–Himalayan Orogen. Several major transforms with disputed motions, including the northward extension of the Dead Sea Fault Zone (DSFZ), meet in this region. To evaluate neotectonic motion on the Amanos and East Hatay fault zones considered to be northward extensions of the DSFZ, the palaeomagnetism of volcanic fields in the Karasu Rift between these faults has been studied. Remanence carriers are low-Ti magnetites and all except 5 of 51 basalt lavas have normal polarity. Morphological, polarity and K–Ar evidence show that rift formation occurred largely during the Brunhes chron with volcanism concentrated at 0.66–0.35 Ma and a subsidiary episode at 0.25–0.05. Forty-four units of normal polarity yield a mean of D/I=8.8°/54.7° with inclination identical to the present-day field and declination rotated clockwise by 8.8±4.0°. Within the 15-km-wide Hassa sector of the Karasu Rift, the volcanic activity is concentrated between the Amanos and East Hatay faults, both with left lateral motions, which have rotated blocks bounded by NW–SE cross faults in a clockwise sense as the Arabian Block has moved northwestwards. An average lava age of 0.5 Ma yields a minimum cumulative slip rate on the system bounding faults of 0.46 cm/year according with the rate deduced from the Africa–Arabia Euler vector and reduced rates of slip on the southern extension of the DSFZ during Plio-Quaternary times. Estimates deduced from offsets of dated lavas flows and morphological features on the Amanos Fault Zone [Tectonophysics 344 (2002) 207] are lower (0.09–0.18 cm/year) probably because they are limited to surface fault breaks and do not embrace the seismogenic crust.Results of this study suggest that most strike slip on the DSFZ is taken up by the Amanos–East Hatay–Afrin fault array in southern Turkey. Comparable estimates of Quaternary slip rate are identified on other faults meeting at an unstable FFF junction (DSFZ, East Anatolian Fault Zone, Karatas Fault Zone). A deceleration in slip rate across the DSFZ and its northward continuation during Plio-Quaternary times correlates with reorganization of the tectonic regime during the last 1–3 Ma including tectonic escape within Anatolia, establishment of the North and East Anatolian Fault Zones bounding the Anatolian collage in mid–late Pliocene times, a contemporaneous transition from transpression to transtension and concentration of all basaltic magmatism in this region within the last 1 Ma.  相似文献   
85.
The Proterozoic Eastern Ghats Mobile Belt along the east coast of India shares a thrusted lower contact with the surrounding cratons. The thrust, known as the Terrane Boundary shear zone, is associated with two large lateral ramps resulting in a curved outline on the northwestern corner of the mobile belt. The Eastern Ghats Mobile Belt is divided into two lithotectonic units, the Lathore Group and the Turekela Group, based on their lithological assemblages and deformational history. On the basis of published data from a Deep Seismic Sounding (DSS) profile of the Eastern Ghats crust, the Terrane Boundary Shear Zone is considered to be listric in nature and acts as the sole thrust between craton and mobile belt. The Lathore and Turekela Groups are nappes. With this structural configuration the NW part is described as a fold thrust belt. However, the thrusting postdates folding and granulite metamorphism that occurred in the Eastern Ghats, as in the Caledonide type of fold thrust belt of NW Scotland. The Terrane Boundary Shear Zone is interpreted to be contiguous with the Rayner-Napier boundary of the Enderby Land in a Gondwana assembly.  相似文献   
86.
The Kunavaram alkaline complex is a NE-SW trending elongate body located along a major lineament, the Sileru Shear Zone (SSZ) that is regarded as a Proterozoic suture related to Indo-Antarctica collision. The complex is hosted within migmatitic quartzofeldspathic gneisses, mafic granulites retrogressed to amphibolites, and quartzites. The structural evolution of the country rocks and the alkaline complex are similar. The first phase of deformation, D1, produces a pervasive segregation banding (S1) in all rock units within and outside the complex. A second deformation phase D2 isoclinally folded S1 along subvertical axial planes with shallow plunging axes. F2 isoclinal folds are ubiquitous in the country rocks and the eastern extremity of the complex. In the interior of the alkaline body, D2 strain decreases and S1 is commonly subhorizontal. While amphibolite to granulite facies conditions prevailed during deformation, post-D2 annealing textures testify to persisting high grade conditions. In the west, a NNE-SSW trending dextral shear zone with strike-slip sense (D3) truncates the complex. Within this shear zone, quartzofeldspathic country rocks are plastically deformed, while hornblende-K-feldspar assemblages of the complex are retrogressed to biotite and plagioclase. Warping related to D3 shears also resulted in fold interference patterns on the subhorizontal S1 foliation in low D2 strain domains. Based on its steep dip, north-easterly trend, and non-coaxial nature with dextral strike-slip sense, the D3 shear zone can be correlated with the SSZ. Since this shear zone, i.e., the SSZ, is not associated with primary igneous fabrics and resulted in solid state deformation of the complex, it cannot be considered as a conduit for alkaline magmatism, but is probably responsible for the post-tectonic disposition of the pluton.  相似文献   
87.
In the Aspe Valley (western Pyrenees), the Europe/Iberia boundary corresponds to a complex fracturing zone, called the ‘Bielle–Accous Wrench-Faulting Corridor’, which represents the classical ‘North-Pyrenean Fault’. Located between the High Primary Range and the North-Pyrenean Zone, the BAWC shows different south-verging sheets mainly composed of Triassic materials. The Bedous ophite, associated with Muschelkalk and Keuper sediments, is also Triassic in age and involved in the same Pyrenean thrusting structures. So, contrary to a recent interpretation, this magmatic rock cannot be related to a supposed Danian plutonism inducing metamorphic processes in the surrounding Mesozoic formations. To cite this article: J. Canérot et al., C. R. Geoscience 336 (2004).  相似文献   
88.
We have carried out seismological observations within the Sea of Marmara (NW Turkey) in order to investigate the seismicity induced after Gölcük–İzmit (Kocaeli) earthquake (Mw 7.4) of August 17, 1999, using ocean bottom seismometers (OBSs). High-resolution hypocenters and focal mechanisms of microearthquakes have been investigated during this Marmara Sea OBS project involving deployment of 10 OBSs within the Çınarcık (eastern Marmara Sea) and Central-Tekirdağ (western Marmara Sea) basins during April–July 2000. Little was known about microearthquake activity and their source mechanisms in the Marmara Sea. We have detected numerous microearthquakes within the main basins of the Sea of Marmara along the imaged strands of the North Anatolian Fault (NAF). We obtained more than 350 well-constrained hypocenters and nine composite focal mechanisms during 70 days of observation. Microseismicity mainly occurred along the Main Marmara Fault (MMF) in the Marmara Sea. There are a few events along the Southern Shelf. Seismic activity along the Main Marmara Fault is quite high, and focal depth distribution was shallower than 20 km along the western part of this fault, and shallower than 15 km along its eastern part. From high-resolution relative relocation studies of some of the microearthquake clusters, we suggest that the western Main Marmara Fault is subvertical and the eastern Main Marmara Fault dips to south at 45°. Composite focal mechanisms show a strike-slip regime on the western Main Marmara Fault and complex faulting (strike-slip and normal faulting) on the eastern Main Marmara Fault.  相似文献   
89.
90.
The most significant damage on highway bridges during the recent earthquakes in Turkey (Kocaeli and Duzce earthquakes) and Taiwan (Chi–Chi earthquake) was the result of fault ruptures traversing transportation infrastructure. This phenomenon and its consequences accentuate the need to examine surface rupture hazards and to identify those areas at risk. This understanding can help to develop remedial measures for both structural and geotechnical engineering. For that purpose, damage to highway bridges during the recent events was reviewed. The total collapse of the highway overpass in Arifiye, during the Kocaeli earthquake, was investigated. The major problems under consideration (in Arifiye) were: (i) dislodging of the bridge spans, and consequently, the total separation of the reinforced concrete girders from the piers; and (ii) the stability of a mechanically stabilized earth wall (MSEW) system under extreme loading conditions. The results of the structural and geotechnical investigations presented herein can be taken in consideration to improve transportation infrastructure against surface rupture hazards.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号