全文获取类型
收费全文 | 997篇 |
免费 | 130篇 |
国内免费 | 277篇 |
专业分类
测绘学 | 145篇 |
大气科学 | 110篇 |
地球物理 | 210篇 |
地质学 | 534篇 |
海洋学 | 125篇 |
天文学 | 4篇 |
综合类 | 84篇 |
自然地理 | 192篇 |
出版年
2024年 | 7篇 |
2023年 | 17篇 |
2022年 | 31篇 |
2021年 | 38篇 |
2020年 | 56篇 |
2019年 | 48篇 |
2018年 | 36篇 |
2017年 | 66篇 |
2016年 | 55篇 |
2015年 | 50篇 |
2014年 | 57篇 |
2013年 | 82篇 |
2012年 | 44篇 |
2011年 | 67篇 |
2010年 | 68篇 |
2009年 | 80篇 |
2008年 | 57篇 |
2007年 | 68篇 |
2006年 | 57篇 |
2005年 | 52篇 |
2004年 | 53篇 |
2003年 | 23篇 |
2002年 | 31篇 |
2001年 | 19篇 |
2000年 | 25篇 |
1999年 | 30篇 |
1998年 | 25篇 |
1997年 | 26篇 |
1996年 | 14篇 |
1995年 | 18篇 |
1994年 | 9篇 |
1993年 | 18篇 |
1992年 | 10篇 |
1991年 | 17篇 |
1990年 | 10篇 |
1989年 | 3篇 |
1988年 | 7篇 |
1987年 | 2篇 |
1986年 | 5篇 |
1985年 | 2篇 |
1984年 | 3篇 |
1982年 | 1篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1978年 | 3篇 |
1977年 | 1篇 |
1976年 | 4篇 |
1973年 | 1篇 |
1971年 | 3篇 |
排序方式: 共有1404条查询结果,搜索用时 0 毫秒
41.
基于2003-2018年池州冬半年观测资料,采用T-mode主成分客观分析法(TPCA)等方法进行固态降水与环流背景的统计分析。结果表明:池州172个固态降水日中,固态降水的主要月份占比分别是1月的44.8%、2月的27.9%和12月的16.3%;其中雨雪转换、纯雪和冻雨3类占比分别为55.2%、41.3%和3.5%。环流形势可划分为一槽一脊型(Ⅰ型),纬向波动型(Ⅱ型)和两槽一脊型(Ⅲ型),Ⅰ型占比最多,Ⅱ型次之,Ⅲ型较少。Ⅰ~Ⅲ型分别代表北方冷空气从中路、西路和东路南下,池州固态降水过程主要受中路冷空气影响。Ⅰ型气温最低,出现固态降水概率最高,是其它形势3倍以上;Ⅱ型气温最高,出现固态降水概率最低。除Ⅲ型外,纯雪过程中低层温度均较雨雪转换过程低2.0 ℃左右;雨雪转换过程中925 hPa温度与850 hPa基本相同,一般在-4.0~-5.0 ℃之间,而纯雪过程则较850 hPa偏高1.0 ℃左右;雨雪转换过程1000 hPa温度基本在0 ℃附近,纯雪则在0 ℃以下。925 hPa盛行东北风,850 hPa存在气旋性环流,配合700 hPa上12.0 m/s左右急流、水汽通量及水汽通量散度大值中心,有利于池州固态降水的产生。它一般属于大尺度降水,层结稳定,锋区位于700 hPa以下,低层有冷平流,切变线一般位于850~800 hPa之间。 相似文献
42.
43.
44.
45.
利用Logistiv判别模型进行强降水预报,并设计3种方案进行对比分析。方案1直接使用14个影响因子进行判别预报,受因子共线性作用及噪音信号影响,虽然拟合效果较好,但预报效果明显下降。方案2对14个影响因子进行主成分分析,利用前6个主成分建模,虽然拟合效果较方案1降低,但由于消除了因子共线性作用以及噪音信号影响,预报效果较方案1提高。方案3运用Bootstrap抽样技术得到符干样本并建模计算模型参数,打乱了原有时间序列中的波动,仪保留平稳信息,拟合自由度进一步降低,导致拟合效果较方案案2下降,但预报效果却是3种方案中最好且最稳定的。在上述研究基础上,利用欧洲中心数值预报模式的预报场资料,建立基于Logistic判别模型的强降水客观预报系统,并在中央气象台业务运行。2013和2014年连续两年汛期预报检验结果表明,概模型对强降水预报的TS评分高于数值模式本身,具有一定的业务参考价值。 相似文献
46.
Edith L Gego P. Steven Porter John S. Irwin Christian Hogrefe S. Trivikrama Rao 《Pure and Applied Geophysics》2005,162(10):1919-1939
Airborne fine particulate matter across the United States is monitored by different networks, the three prevalent ones presently being the Clean Air Status and Trend Network (CASTNet), the Interagency Monitoring of PROtected Visual Environment Network (IMPROVE) and the Speciation and Trend Network (STN). If combined, these three networks provide speciated fine particulate data at several hundred locations throughout the United States. Yet, differences in sampling protocols and samples handling may not allow their joint use. With these concerns in mind, the objective of this study is to assess the spatial and temporal comparability of the sulfate, nitrate and ammonium concentrations reported by each of these networks. One of the major differences between networks is the sampling frequency they adopted. While CASTNet measures pollution levels on seven-day integrated samples, STN and IMPROVE data pertain to 24-hour samples collected every three days. STN and IMPROVE data therefore exhibit considerably more short-term variability than their CASTNet counterpart. We show that, despite their apparent incongruity, averaging the data with a window size of four to six weeks is sufficient to remove the effects of differences in sampling frequency and duration and allow meaningful comparison of the signals reported by the three networks of concern. After averaging, all the sulfate and, to a lesser degree, ammonium concentrations reported are fairly similar. Nitrate concentrations, on the other hand, are still divergent. We speculate that this divergence originates from the different types of filters used to collect particulate nitrate. Finally, using a rotated principal component technique (RPCA), we determined the number and the geographical organization of the significant temporal modes of variation (clusters) detected by each network for the three pollutants of interest. For sulfate and ammonium, the clusters’ geographical boundaries established for each network and the modes of variations within each cluster seem to correspond. RPCA erformed on nitrate concentrations revealed that, for the CASTNet and IMPROVE networks, the modes of variation do not correspond to unified geographical regions but are found more sporadically. For STN, the clustered areas are unified and easily delineable. We conclude that the possibility of jointly using the data collected by CASTNet, IMPROVE and STN has to be weighed pollutant by pollutant. While sulfate and ammonium data show some potential for joint use, at this point, combining the nitrate data from these monitoring networks may not be a judicious choice. 相似文献
47.
基于自平衡力的弹塑性动力反应分析方法 总被引:1,自引:3,他引:1
本文给出了一个基于自平衡力的弹塑性结构动力反应分析的新方法,详细叙述了方法的原理和过程,并对用改进的Takeda滞变模型描述的梁单元框架结构给出了具体的分析方法。这个方法与传统的方法不同,在分析中不必修正结构的刚度矩阵,而代之以计算代表塑性铰变形引起的应力重分布的动力自平衡力,因而大大地节省了计算机时,最后通过算例对本文方法进行了验证。 相似文献
48.
We consider the advantages of a formalism based on concept of the asymmetric continuum and we present some equivalence theorems
relating it to the asymmetric elasticity and to micropolar and micromorphic theories as founded by Nowacki, Cosserats and
Eringen.
We consider the basic processes in an asymmetric continuum which could be reduced to the point basic motions/deformations.
The co-action of spin and shear motions is assumed to play the main role in fracturing process, while the constitutive relation
between the antisymmetric stresses and rotations replaces the friction constitutive law. 相似文献
49.
Airborne light detection and ranging (LiDAR) bathymetry appears to be a useful technology for bed topography mapping of non‐navigable areas, offering high data density and a high acquisition rate. However, few studies have focused on continental waters, in particular, on very shallow waters (<2 m) where it is difficult to extract the surface and bottom positions that are typically mixed in the green LiDAR signal. This paper proposes two new processing methods for depth extraction based on the use of different LiDAR signals [green, near‐infrared (NIR), Raman] of the SHOALS‐1000T sensor. They have been tested on a very shallow coastal area (Golfe du Morbihan, France) as an analogy to very shallow rivers. The first method is based on a combination of mathematical and heuristic methods using the green and the NIR LiDAR signals to cross validate the information delivered by each signal. The second method extracts water depths from the Raman signal using statistical methods such as principal components analysis (PCA) and classification and regression tree (CART) analysis. The obtained results are then compared to the reference depths, and the performances of the different methods, as well as their advantages/disadvantages are evaluated. The green/NIR method supplies 42% more points compared to the operator process, with an equivalent mean error (?4·2 cm verusu ?4·5 cm) and a smaller standard deviation (25·3 cm verusu 33·5 cm). The Raman processing method provides very scattered results (standard deviation of 40·3 cm) with the lowest mean error (?3·1 cm) and 40% more points. The minimum detectable depth is also improved by the two presented methods, being around 1 m for the green/NIR approach and 0·5 m for the statistical approach, compared to 1·5 m for the data processed by the operator. Despite its ability to measure other parameters like water temperature, the Raman method needed a large amount of reference data to provide reliable depth measurements, as opposed to the green/NIR method. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
50.