首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12270篇
  免费   2472篇
  国内免费   2098篇
测绘学   145篇
大气科学   334篇
地球物理   3218篇
地质学   9235篇
海洋学   995篇
天文学   30篇
综合类   445篇
自然地理   2438篇
  2024年   90篇
  2023年   260篇
  2022年   538篇
  2021年   638篇
  2020年   555篇
  2019年   719篇
  2018年   590篇
  2017年   714篇
  2016年   752篇
  2015年   662篇
  2014年   844篇
  2013年   901篇
  2012年   783篇
  2011年   759篇
  2010年   643篇
  2009年   832篇
  2008年   748篇
  2007年   819篇
  2006年   690篇
  2005年   598篇
  2004年   517篇
  2003年   450篇
  2002年   389篇
  2001年   288篇
  2000年   273篇
  1999年   297篇
  1998年   278篇
  1997年   236篇
  1996年   194篇
  1995年   153篇
  1994年   159篇
  1993年   122篇
  1992年   134篇
  1991年   65篇
  1990年   43篇
  1989年   31篇
  1988年   27篇
  1987年   7篇
  1986年   12篇
  1985年   5篇
  1984年   7篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   6篇
  1979年   5篇
  1977年   1篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
231.
The central structure belt in Turpan-Hami basin is composed of the Huoyanshan structure and Qiketai structure formed in late Triassic-early Jurassic, and is characterized by extensional tectonics. The thickness of strata in the hanging wall of the growth fault is obviously larger than that in the footwall, and a deposition center was evolved in the Taibei sag where the hanging wall of the fault is located. In late Jurassic the collision between Lhasa block and Eurasia continent resulted in the transformation of the Turpan-Hami basin from an extensional structure into a compressional structure, and consequently in the tectonic inversion of the central structure belt of the Turpan-Hami basin from the extensional normal fault in the earlier stage to the compressive thrust fault in the later stage. The Tertiary collision between the Indian plate and the Eurasian plate occurred around 55Ma, and this Himalayan orogenic event has played a profound role in shaping the Tianshan area, only the effect of the collision to this area was delayed since it culminated here approximately in late Oligocene-early Miocene. The central structure belt was strongly deformed and thrusted above the ground as a result of this tectonic event.  相似文献   
232.
Sedimentological, cyclic-stratigraphic, paleomagnetic, and clay-mineralogical studies on the early Oligocene Yaxicuo Group in the Hoh Xil Basin, the largest Cenozoic sedimentary basin in the hinterland of the Tibetan Plateau, provide abundant information of paleoclimate changes. A 350-m thick section in the middle-lower Yaxicuo Group was analyzed to reveal the climatic history that occurred in the Hoh Xil region during the early Oligocene interval 31.30-30.35 Ma, dated with the paleomagnetic chronostratigraphy. The results indicate that add and cold climate dominated the Hoh Xil region during the early Oligocene in general, being related to the global cooling and drying events that occurred in the earliest Oligocene. Within this period, relatively warm and wet climate accompanied by strong tectonic activity occurred in the 31.05-30.75 Ma interval; while add and cold climate and relatively inactive tectonics occurred in the 31.30-31.05 and 30.75-30.35 Ma intervals. Furthermore, spectral analyses of high-temporal resolution paleoclimatic records show orbital periods including eccentricity, obliquity, and precession. It is concluded that paleoclimate changes during the early Oligocene in the Hoh Xil region were forced by both tectonic activity and orbital periods.  相似文献   
233.
Estimating palaeowind strength from beach deposits   总被引:1,自引:0,他引:1  
Abstract The geological record of past wind conditions is well expressed in the coarse gravel, cobble and boulder beach deposits of Quaternary palaeolakes in the Great Basin of the western USA and elsewhere. This paper describes a technique, using the particle‐size distribution of beach deposits, to reconstruct palaeowind conditions when the lakes were present. The beach particle technique (BPT) is first developed using coarse beach deposits from the 1986–87 highstand of the Great Salt Lake in Utah, combined with instrumental wind records from the same time period. Next, the BPT is used to test the hypothesis that wind conditions were more severe than at present during the last highstand of Lake Lahontan (≈ 13 ka), which only lasted a decade or two at most. The largest 50 beach clasts were measured at nine beach sites located along the north, west and south sides of Antelope Island in the Great Salt Lake, all of which formed in 1986–87. At these sites, the largest clast sizes range from 10 to 28 cm (b‐axis), and fetch lengths range from 25 to 55 km. Nearshore wave height was calculated by assuming that the critical threshold velocity required to move the largest clasts represents a minimum estimate of the breaking wave velocity, which is controlled by wave height. Shoaling transformations are undertaken to estimate deep‐water wave heights and, ultimately, wind velocity. Wind estimates for the nine sites, using the BPT, range from 6·5 to 17·4 m s?1, which is in reasonable agreement with the instrumental record from Salt Lake City Airport. The same technique was applied to eight late Pleistocene beaches surrounding the Carson Sink sub‐basin of Lake Lahontan, Nevada. Using the BPT, estimated winds for the eight sites range from 9·7 to 27·1 m s?1. The strongest winds were calculated for a cobble/boulder beach with a fetch of 25 km. Instrumental wind records for the 1992–99 period indicate that wind events of 9–12 m s?1 are common and that the strongest significant wind event (≥ 9 m s?1 for ≥ 3 h) reached an average velocity of 15·5 m s?1. Based on this preliminary comparison, it appears that the late Pleistocene western Great Basin was a windier place than at present, at least for a brief time.  相似文献   
234.
Following the Frasnian–Famennian mass extinction, which eliminated most skeletal reef-building fauna, the early Famennian reefs of the Canning Basin were constructed primarily by reef-framework microbial communities. In the Napier and Oscar Ranges, the Famennian reef complexes had high-energy, reef-flat depositional environments on a reef-rimmed platform that transitioned into low-energy, deep-water reefs growing in excess of 50 m below sea level. High-energy, reef-flat depositional environments contain doming fenestral stromatolites that grade into porous thrombolites and are associated with coarse-grained sandstones and grainstones. The reef-margin subfacies contains mounds of microdigitate thrombolites, which are more delicate than the reef-flat thrombolites and locally contain abundant red algae, Girvanella, renalcids and sediment-filled tubes. Within the thrombolites, the red algae are in upright growth positions, suggesting that the thrombolites are largely composed of carbonate that precipitated in situ. Reefal-slope environments are dominated by Wetheredella and Rothpletzella with locally abundant Girvanella, renalcids and Uralinella. In reefal-slope strata, delicate fans and microdigitate stromatolites of Wetheredella and Rothpletzella are often oriented horizontal or diagonal to bedding and are interpreted as syndepositionally toppled over. Most mesoscale microbial community structures contain several species of microbial fossils, and no single microbial species appears to have controlled the morphology of the community structure. Therefore, the depositional environment must have determined the distribution and morphology of the stromatolites, thrombolites and other microbial community structures. The adaptability of microbial communities to various reef environments allowed them to fill ecological niches opportunistically after the Frasnian–Famennian mass extinction.  相似文献   
235.
Takeshi Kudo  Koshun Yamaoka   《Tectonophysics》2003,367(3-4):203-217
The driving force for the basin subsiding against isostatic balance in and around Lake Biwa in the Kinki district, Japan is discussed. The lake region is characterized by strong negative Bouguer anomalies, especially by a steep horizontal gradient zone of gravity anomaly running along the western margin of the lake. The large negative anomaly (>50 mgal) cannot be explained by low-density sediments beneath it. A down-warping structure extending to the Moho depth should be taken into account. This conjecture has been strongly supported by a short-period receiver function imaging, which shows a clear offset of about 8 km for the Moho discontinuity under the steep gravity gradient zone.A question arises as to what is the driving force to create such a large down-warping structure. We consider that the subduction of the shallow-dipping slab under the region (Philippine Sea Slab) may cause crustal deformation by dragging the viscous mantle downward. In order to verify this model, we simulated the induced mantle flow due to the subduction of the Philippine Sea Slab and the pressure distribution on the crust–mantle boundary. This numerical experiment showed that the induced flow makes a strong negative pressure zone under the lake region if the slab has a vertical offset along the direction of subduction. This offset of the slab is consistent with plate models deduced from hypocentral distributions and Sp phases of the deep-focus earthquakes.  相似文献   
236.
The Permocarboniferous basins in Northeast Germany formed on the heterogeneous and eroded parts of the Variscan orogene and its deformed northern foreland. Transtensional tectonic movements and thermal re-equilibration lead to medium-scale crustal fragmentation, fast subsidence rates and regional emplacement of large amounts of mostly acidic volcanics. The later basin formation and differentiation was triggered by reversals of the large-scale stress field and reactivation of prominent zones of weakness like the Elbe Fault System and the Rhenohercynian/Saxothuringian boundary that separate different Variscan basement domains in the area. The geomechanical behaviour of the latter plays an important role for the geodynamic evolution of the medium to large-scale structural units, which we can observe today in three dimensions on structural maps, geophysical recordings and digital models. This study concentrates on an area that comprises the southern Northeast German Basin, the Saale Basin, the Flechtingen High, the Harz Mountains High and the Subhercynian Basin. The presented data include re-evaluations of special geological and structural maps, the most recent interpretation of the DEKORP BASIN 9601 seismic profile and observations of exposed rock sections in Northeast Germany. On the basis of different structural inventories and different basement properties, we distinguish two structural units to the south and one structural unit to the north of the Elbe Fault System. For each unit, we propose a geomechanical model of basin formation and basin inversion, and show that the Rhenohercynian Fold and Thrust Belt domain is deformed in a thin-skinned manner, while the Mid-German Crystalline Rise Domain, which is the western part of the Saxothuringian Zone, rather shows a thick-skinned deformation pattern. The geomechanical model for the unit north to the Elbe Fault System takes account to the fact that the base of the Zechstein beneath the present Northeast German basin shows hardly any evidence for brittle deformation, which indicates a relative stable basement. Our geomechanical model suggests that the Permocarboniferous deposits may have contributed to the structural stiffness by covering small to medium scale structures of the upper parts of the brittle basement. It is further suggested that the pre-Zechstein successions underneath the present Northeast German basin were possibly strengthening during the Cretaceous basin inversion, which resulted in stress transfer to the long-lived master faults, as indicated for example by the shape of the salt domes in the vicinity of the latter faults. Contrary to this, post-Zechstein successions deformed in a different and rather complex way that was strongly biased by intensive salt tectonic movements.  相似文献   
237.
Eighty-two core samples were collected from the Spring Valley #1 well which penetrates the Upper Carboniferous strata in the Late Devonian–Early Permian Maritimes Basin. The strata consist of alternating sandstones and mudstones deposited in a continental environment. The objective of this study is to characterize the relationship of sandstone porosity with depth, and to investigate the diagenetic processes related to the porosity evolution. Porosity values estimated from point counting range from 0% to 27.8%, but are mostly between 5% and 20%. Except samples that are significantly cemented by calcite, porosity values clearly decrease with depth. Two phases of calcite cement were distinguished based on Cathodoluminescence, with the early phase being largely dissolved and preserved as minor relicts in the later phase. Feldspar dissolution was extensive and contributed significantly to the development of secondary porosity. Quartz cementation was widespread and increased with depth. Fluid inclusions recorded in calcite and quartz cements indicate that interstitial fluids in the upper part of the stratigraphic column were dominated by waters with salinity lower than that of seawater, the middle part was first dominated by low-salinity waters, then invaded by brines, and the lower part was dominated by brines. Homogenization temperatures of fluid inclusions generally increase with depth and suggest a paleogeothermal gradient of 25 °C/km, which is broadly consistent with that indicated by vitrinite reflectance data. An erosion of 1.1–2.4 (mean 1.75) km of strata is inferred to have taken place above the stratigraphic column. δ18O values of calcite cements (mainly from the late phase) decrease with depth, implying increasing temperatures of formation, as also suggested by fluid-inclusion data. δ13C values of calcite cements range from −13.4‰ to −5.7‰, suggesting that organic matter was an important carbon source for calcite cements. A comparison of the porosity data with a theoretical compaction curve indicates that the upper and middle parts of the stratigraphic column show higher-than-normal porosity values, which are related to significant calcite and feldspar dissolution. Meteoric incursion and carboxylic acids generated from organic maturation were probably responsible for the abundant dissolution events.  相似文献   
238.
The Rajmahal Traps were discovered in the Panagarh area, West Bengal, during the exploration for coal resources. A Gondwana succession was found beneath the traps, consisting of the Early Cretaceous Intratrappean Rajmahal Formation, the Early Triassic Panchet Formation and the Late Permian coal-bearing Raniganj Formation. The present palynological study was aimed at confirming the age of the Panchet Formation. As a result of this study it has been found that Jurassic sediments are also included in the Panchet Formation. The study has revealed that the Panchet Formation, defined on a lithological basis, is a time-transgressive unit extending from the Early Triassic to the Late Jurassic, with a phase of non-deposition between the Middle Triassic and Middle Jurassic.  相似文献   
239.
Despite growing evidence for environmental oscillations during the last glacial–interglacial transition from high latitude, terrestrial sites of the North Pacific rim, oxygen-isotopic records of these oscillations remain sparse. The lack of data is due partially to the paucity of lakes that contain carbonate sediment suitable for oxygen-isotopic analysis. We report here the first record of oxygen-isotopic composition in diatom silica (δ18OSi) from a lake in that region. δ18OSi increases gradually from 19.0 to 23.5‰ between 12,340 and 11,000 14C yr B.P., reflecting marked climatic warming at the end of the last glaciation. Around 11,000 14C yr B.P., δ18OSi decreases by 1.7‰, suggesting a temperature decrease of 3.5–8.9 °C at the onset of the Younger Dryas (YD) in southwestern Alaska. Climatic recovery began ca. 10,740 14C yr B.P., as inferred from the increase of δ18OSi to a maximum of 23.9‰ near the end of the YD. Our data reveal that a YD climatic reversal in southwestern coastal areas of Alaska occurred, but the YD climate did not return to full-glacial conditions.  相似文献   
240.
New dating in the Carson Sink at the termini of the Humboldt and Carson rivers in the Great Basin of the western United States indicates that lakes reached elevations of 1204 and 1198 m between 915 and 652 and between 1519 and 1308 cal yr B.P., respectively. These dates confirm Morrison's original interpretation (Lake Lahontan: Geology of the Southern Carson Desert, Professional Paper 40, U.S. Geol. Survey, 1964) that these shorelines are late Holocene features, rather than late Pleistocene as interpreted by later researchers. Paleohydrologic modeling suggests that discharge into the Carson Sink must have been increased by a factor of about four, and maintained for decades, to account for the 1204-m lake stand. The hydrologic effects of diversions of the Walker River to the Carson Sink were probably not sufficient, by themselves, to account for the late Holocene lake-level rises. The decadal-long period of increased runoff represented by the 1204-m lake is also reflected in other lake records and in tree ring records from the western United States.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号