全文获取类型
收费全文 | 12947篇 |
免费 | 2481篇 |
国内免费 | 2265篇 |
专业分类
测绘学 | 149篇 |
大气科学 | 364篇 |
地球物理 | 3254篇 |
地质学 | 9735篇 |
海洋学 | 1289篇 |
天文学 | 29篇 |
综合类 | 445篇 |
自然地理 | 2428篇 |
出版年
2024年 | 165篇 |
2023年 | 390篇 |
2022年 | 622篇 |
2021年 | 737篇 |
2020年 | 633篇 |
2019年 | 757篇 |
2018年 | 648篇 |
2017年 | 758篇 |
2016年 | 824篇 |
2015年 | 694篇 |
2014年 | 861篇 |
2013年 | 911篇 |
2012年 | 813篇 |
2011年 | 779篇 |
2010年 | 699篇 |
2009年 | 837篇 |
2008年 | 745篇 |
2007年 | 820篇 |
2006年 | 689篇 |
2005年 | 600篇 |
2004年 | 517篇 |
2003年 | 447篇 |
2002年 | 391篇 |
2001年 | 286篇 |
2000年 | 271篇 |
1999年 | 297篇 |
1998年 | 281篇 |
1997年 | 235篇 |
1996年 | 198篇 |
1995年 | 154篇 |
1994年 | 161篇 |
1993年 | 122篇 |
1992年 | 136篇 |
1991年 | 66篇 |
1990年 | 44篇 |
1989年 | 30篇 |
1988年 | 26篇 |
1987年 | 7篇 |
1986年 | 12篇 |
1985年 | 5篇 |
1984年 | 7篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1980年 | 6篇 |
1979年 | 5篇 |
1977年 | 1篇 |
1954年 | 2篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Questions persist concerning the earthquake potential of the populous and industrial Lake Ontario (Canada–USA) area. Pertinent to those questions is whether the major fault zone that extends along the St. Lawrence River valley, herein named the St. Lawrence fault zone, continues upstream along the St. Lawrence River valley at least as far as Lake Ontario or terminates near Cornwall (Ontario, Canada)–Massena (NY, USA). New geological studies uncovered paleotectonic bedrock faults that are parallel to, and lie within, the projection of that northeast-oriented fault zone between Cornwall and northeastern Lake Ontario, suggesting that the fault zone continues into Lake Ontario. The aforementioned bedrock faults range from meters to tens of kilometers in length and display kinematically incompatible displacements, implying that the fault zone was periodically reactivated in the study area. Beneath Lake Ontario the Hamilton–Presqu'ile fault lines up with the St. Lawrence fault zone and projects to the southwest where it coincides with the Dundas Valley (Ontario, Canada). The Dundas Valley extends landward from beneath the western end of the lake and is marked by a vertical stratigraphic displacement across its width. The alignment of the Hamilton–Presqu'ile fault with the St. Lawrence fault zone strongly suggests that the latter crosses the entire length of Lake Ontario and continues along the Dundas Valley.The Rochester Basin, an east–northeast-trending linear trough in the southeastern corner of Lake Ontario, lies along the southern part of the St. Lawrence fault zone. Submarine dives in May 1997 revealed inclined layers of glaciolacustrine clay along two different scarps within the basin. The inclined layers strike parallel to the long dimension of the basin, and dip about 20° to the north–northwest suggesting that they are the result of rigid-body rotation consequent upon post-glacial faulting. Those post-glacial faults are growth faults as demonstrated by the consistently greater thickness, unit-by-unit, of unconsolidated sediments on the downthrown (northwest) side of the faults relative to their counterparts on the upthrown (southeast) side. Underneath the western part of Lake Ontario is a monoclinal warp that displaces the glacial and post-glacial sediments, and the underlying bedrock–sediment interface. Because of the post-glacial growth faults and the monoclinal warp the St. Lawrence fault zone is inferred to be tectonically active beneath Lake Ontario. Furthermore, within the lake it crosses at least five major faults and fault zones and coexists with other neotectonic structures. Those attributes, combined with the large earthquakes associated with the St. Lawrence fault zone well to the northeast of Lake Ontario, suggest that the seismic risk in the area surrounding and including Lake Ontario is likely much greater than previously believed. 相似文献
62.
波斯湾盆地是世界著名的富油气盆地,同时也是受多期构造演化控制的叠合盆地,通过地质与地球物理资料分析,认为盆地经历了前寒武纪-石炭纪陆内断陷盆地沉积与反转、二叠纪-中白垩世新特提斯被动陆缘盆地沉积和晚白垩世-新生代前陆盆地沉积演化3大演化阶段。断陷盆地演化阶段受近南北向陡直断裂控制,以碎屑岩和膏盐岩和碳酸盐岩建造为特征,碎屑岩在该阶段最为发育。被动陆缘盆地演化和前陆盆地演化阶段以碳酸盐岩和膏盐岩建造为主要特征。盆地叠合演化形成了前寒武系-下寒武统、志留系、侏罗系以及中下白垩统等多套富含有机质的烃源岩,与盆地内叠合联片发育的前寒武系-下寒武统、上二叠统、下三叠统、上侏罗统和中新统等多套膏盐岩构成了盆地内最佳的源盖组合,成为盆地油气富集的基础。每套优质的盖层之下都发育了一套优质的储层,并与构造作用形成的圈闭形成了盆地良好的储-圈组合,成为油气富集的必要条件。勘探成果显示,盆地西北部以断褶构造圈闭为主要特征,东北部以盐构造和断褶构造圈闭为特征,前陆斜坡区则以大型古隆起控制的圈闭为特征,盆地油气具有自山前带向斜坡区,含油气层位逐渐变老的特征。因此,对盆地的油气勘探,在不同的地区要区别对待。 相似文献
63.
以皮里青河流域为研究区,运用小时降水、土地利用类型、数字高程(DEM)、实测淹没深度等数据,基于FloodArea模型对研究区2010年5月2日、2012年6月3日、2016年5月9日、2016年6月17日洪水过程进行再现模拟,通过精度验证并建立了降水-淹没深度的关系,在此基础上确定了4个淹没等级对应的致灾临界雨量。相关分析得出喀拉亚尕奇乡累计8 h降雨量与模拟洪水淹没深度的相关性最好,达到了0.96,潘津乡降雨累计5 h的相关性最好,为0.99;通过实测数据对模拟淹没深度进行精度检验得出,喀拉亚尕奇乡和潘津乡两个考察点相对误差分别为0.47 m和0.1 m,误差率分别为31.33%和7.69%,FloodArea模型对研究区洪水过程模拟的效果较好,可以反映出该区域的洪水淹没情况,能为无水文资料的山区流域的山洪过程进行较为精准的模拟;按照山洪灾害等级划分标准和降水-淹没深度的关系得出,预警点累计5 h降水得到对应4个等级的致灾临界雨量阈值分别为:四级17.84 mm、三级32.39 mm、二级54.21 mm、一级76.04 mm。 相似文献
64.
莺歌海盆地莺歌海组二段泥岩盖层封闭性综合评价 总被引:2,自引:0,他引:2
通过实测莺歌海盆地莺歌海组二段泥岩盖层的排替压力,建立了盖层排替压力与声波时差的线性关系,进而提出了利用声波时差及地震速度资料求取排替压力的方法.接着,利用测井声波时差和地震速度资料,按等效深度法确定莺歌海组二段下部泥岩盖层的超压分布.综合考虑盖层累计厚度、排替压力、剩余压力、气藏内部压力、断裂对盖层破坏程度和天然气本... 相似文献
65.
根据2005—2017年卫星遥感反演的太湖蓝藻水华信息,利用区域气象观测数据分析各类气象因子对太湖蓝藻深水华形成的影响,结果表明:①在日平均气温为0~35℃区间内会出现蓝藻聚集现象,其中最适宜气温区间为15.1~35℃,该区间内累计出现蓝藻水华的面积占比达90%、出现大面积蓝藻水华占比达93%;②在卫星观测到蓝藻前6h,平均风速为0.2~4.8m/s区间内能观测到蓝藻水华,其中最适宜的平均风速区间为0.5~3.4m/s,该区间内蓝藻水华累计出现次数占比达94.7%,大面积蓝藻水华主要出现在平均风速2.0m/s的情况下,占比89%;③降水总体上呈负效应,但在观测到有大面积蓝藻水华的情况下,前24h有小雨(10mm)的情形与总降水次数之比达88%,说明小雨的适度扰动有利于形成大面积蓝藻水华;④日照充足有利于蓝藻生长,但并非蓝藻水华形成的必要条件。在此基础上建立的多元回归综合气象指数模型,拟合结果较好,通过了0.001的显著性检验。 相似文献
66.
滇西思茅盆地景谷地区曼岗组石英颗粒表面特征及其指示意义 总被引:2,自引:0,他引:2
石英具有硬度大和化学稳定性高的特点,其颗粒表面特征能很好的反映沉积环境,通过扫描电镜观察石英表面微细特征是判别沉积环境行之有效的方法。思茅盆地白垩系曾一度被认为是陆相水成沉积,笔者通过野外识别及室内基础研究发现,景谷地区下白垩统曼岗组具有风成沉积特征,需对该套地层开展石英颗粒表面特征的系统研究来进一步确定其沉积相,研究结果表明:研究区曼岗组石英颗粒表面具有明显的风成特征,磨圆度高,普遍发育典型的蝶形撞击坑、新月形撞击坑、毛玻璃化表面,存在沙漠漆,极易与水成特征相区别;而其较强的溶蚀作用与沉淀作用则显示了当时干旱炎热的气候条件。在风成沉积确定的基础上,笔者再结合典型沉积构造,粒度分析、岩性特征等沉积特征进行综合分析,认为研究区曼岗组应属沙漠沉积。 相似文献
67.
Late Pleistocene outburst flooding from pluvial Lake Alvord into the Owyhee River, Oregon 总被引:1,自引:0,他引:1
At least one large, late Pleistocene flood traveled into the Owyhee River as a result of a rise and subsequent outburst from pluvial Lake Alvord in southeastern Oregon. Lake Alvord breached Big Sand Gap in its eastern rim after reaching an elevation of 1292 m, releasing 11.3 km3 of water into the adjacent Coyote Basin as it eroded the Big Sand Gap outlet channel to an elevation of about 1280 m. The outflow filled and then spilled out of Coyote Basin through two outlets at 1278 m and into Crooked Creek drainage, ultimately flowing into the Owyhee and Snake Rivers. Along Crooked Creek, the resulting flood eroded canyons, stripped bedrock surfaces, and deposited numerous boulder bars containing imbricated clasts up to 4.1 m in diameter, some of which are located over 30 m above the present-day channel.Critical depth calculations at Big Sand Gap show that maximum outflow from a 1292- to 1280-m drop in Lake Alvord was 10,000 m3 s− 1. Flooding became confined to a single channel approximately 40 km downstream of Big Sand Gap, where step-backwater calculations show that a much larger peak discharge of 40,000 m3 s− 1 is required to match the highest geologic evidence of the flood in this channel. This inconsistency can be explained by (1) a single 10,000 m3 s− 1 flood that caused at least 13 m of vertical incision in the channel (hence enlarging the channel cross-section); (2) multiple floods of 10,000 m3 s− 1 or less, each producing some incision of the channel; or (3) an earlier flood of 40,000 m3 s− 1 creating the highest flood deposits and crossed drainage divides observed along Crooked Creek drainage, followed by a later 10,000 m3 s− 1 flood associated with the most recent shorelines in Alvord and Coyote Basins.Well-developed shorelines of Lake Alvord at 1280 m and in Coyote Basin at 1278 m suggest that after the initial flood, postflood overflow persisted for an extended period, connecting Alvord and Coyote Basins with the Owyhee River of the Columbia River drainage. Surficial weathering characteristics and planktonic freshwater diatoms in Lake Alvord sediment stratigraphically below Mt. St. Helens set Sg tephra, suggest deep open-basin conditions at 13–14 ka (14C yr) and that the flood and prominent shorelines date to about this time. But geomorphic and sedimentological evidence also show that Alvord and Coyote Basins held older, higher-elevation lakes that may have released earlier floods down Crooked Creek. 相似文献
68.
吐格尔明背斜和阳北断裂位于塔里木盆地北缘,南天山山前库车褶皱冲断带的东段,两者均为基底卷入型构造。阳北断裂是一个反转构造,其变形历史可以追溯到侏罗纪—白垩纪的正断层;新生代构造反转,发生了多期冲断变形加速期,分别发生于白垩纪末—古近纪初、古近纪末—新近纪初、中新世早期、上新世和第四纪。吐格尔明背斜构造带是阳北断裂中新世早期及以后的冲断作用派生出来的一个次级基底卷入型构造变形带。它由吐格尔明背斜及其南、北两条呈背冲关系的逆冲断层组成。背斜核部元古宇变质岩出露地表;中、新生界直接不整合于变质岩之上,缺失全部古生界,说明研究区可能属于一个长期存在的古生代古隆起。
相似文献69.
The origin and source of the petroleum in the Jurassic reservoirs within the eastern Fukang sub-depression were geochemically investigated. They show thermal maturities matching the peak generation stage, while the condensates are at the early stage of intense cracking. Oils and condensates may have experienced mild evaporative fractionation, while mixing of severely biodegraded with non-biodegraded oils has occurred. Using biomarkers and isotopes, petroleums were classified into Group I, II and III genetic groups, with Group III further divided into IIIa and IIIb subgroups. Group I petroleum displays heavy carbon isotopes, a strong predominance of pristine over phytane, high C19 and C20 tricyclic and C24 tetracyclic terpanes, low gammacerane, and dominant C29 steranes, while Group II shows light carbon isotopes, a predominance of phytane over pristine, high C21 and C23 tricyclic with low C24 tetracyclic terpanes, high gammacerane and dominant C27 steranes. Group IIIa petroleum shows mixing compositions of Group I and II, while Group IIIb displays similar compositions to Group I, but with significantly higher Ts, C29Ts and C30 diahopane proportions. Oil-source rock correlation suggests Group I and II petroleums originate from Jurassic and Permian source rocks, respectively, while Group IIIa are mixtures sourced from these rocks and IIIb are mixtures from Jurassic and Triassic source rocks. 相似文献
70.
胶莱盆地是位于胶东半岛的白垩纪盆地,前人对该盆地的沉积-构造演化进行了相关研究,也取得了重要进展。但是关于盆地初始形成阶段古构造应力场状态还存在一些争论。本文通过对盆地内部断层滑动矢量数据的反演及节理、同沉积断层指示意义分析,将胶莱盆地白垩纪构造演化划分为五个阶段:早白垩世早期NWW-SEE向伸展,控制了莱阳群初始沉积;莱阳群沉积末期近E-W向挤压;早白垩世晚期E-W向伸展,形成了青山群;早白垩世末期NW-SE向挤压;晚白垩世近N-S向至NNE-SSW向伸展,形成了王氏群。大量的野外现象与前人研究成果均与本文得到的盆地初始成盆阶段NWW-SEE向伸展应力场相吻合。NWW-SEE向伸展作用可能是在古太平洋板块向欧亚板块俯冲过程中,古太平洋板块后撤与苏鲁造山带后造山作用的共同作用下发生的,代表胶莱盆地形成初期,受苏鲁造山带造山后期作用的影响;而青山期伸展方向的变化可能指示盆地主要受到古太平洋板块后撤的影响。盆地在白垩纪古构造应力场的作用下,分别受到早白垩世裂谷作用与晚白垩世走滑拉分作用控制,两种作用的叠加使胶莱盆地成为一个复合型盆地。 相似文献