首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13210篇
  免费   1987篇
  国内免费   3245篇
测绘学   364篇
大气科学   1602篇
地球物理   2795篇
地质学   4425篇
海洋学   6205篇
天文学   127篇
综合类   863篇
自然地理   2061篇
  2024年   62篇
  2023年   204篇
  2022年   458篇
  2021年   507篇
  2020年   480篇
  2019年   560篇
  2018年   487篇
  2017年   580篇
  2016年   536篇
  2015年   587篇
  2014年   779篇
  2013年   835篇
  2012年   726篇
  2011年   805篇
  2010年   688篇
  2009年   955篇
  2008年   861篇
  2007年   931篇
  2006年   853篇
  2005年   805篇
  2004年   740篇
  2003年   632篇
  2002年   609篇
  2001年   496篇
  2000年   462篇
  1999年   430篇
  1998年   369篇
  1997年   327篇
  1996年   298篇
  1995年   249篇
  1994年   269篇
  1993年   204篇
  1992年   167篇
  1991年   104篇
  1990年   74篇
  1989年   108篇
  1988年   44篇
  1987年   33篇
  1986年   17篇
  1985年   24篇
  1984年   21篇
  1983年   18篇
  1982年   12篇
  1981年   17篇
  1980年   2篇
  1979年   5篇
  1978年   8篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
691.
The spatial and temporal variability of tidal mixing in Bohai Sea is studied using a numerical approach. In calculating tidal mixing, accurate barotropic tidal current is obtained via a harmonic analysis package utilizing the simulated current output from a high-resolution regional ocean model. And a “small-scale” roughness map is adopted to describe the detailed topographic features of Bohai Sea. It is shown that the tidal mixing estimated in Bohai Sea is much higher than the level of global background, and fluctuates considerably at some regions within a single day. In Liaodong Bay, Bohai Bay and Bohai Strait, the mixing varies greatly, with the peak value of O (10?2) m2 s?1. The order of magnitude of mixing in Laizhou Bay is about O (10?5~10?3) m2 s?1. Mixing with background level of O (10?5) m2 s?1 only appears in central area. Result also shows that rough topography plays relatively a more important role than tidal current in enhancing diapycnal mixing in Bohai Sea. The distributions of tidal mixing in selected sections reveal that the vertical stratification in Bohai Sea is not obvious, generally renders a barotropic structure.  相似文献   
692.
为研究东海区厚壳贻贝(Mytilus coruscus)遗传多样性,以厚壳贻贝F mtDNA D-loop为标记,对浙江省舟山嵊山岛、宁波渔山岛、温州南麂岛、福建省宁德湾和莆田南日岛五个海区的厚壳贻贝群体进行了遗传分析。结果表明,厚壳贻贝各群体的遗传多样性差异不明显,在5个群体中,宁德群体的遗传多样性相对最丰富;将5个群体作为一个整体时,呈现出较高的单倍型多样性和较低的核苷酸多样性。对厚壳贻贝5个群体间的遗传分化系数(Fst)和基因流(Nm)进行检测,结果显示群体间Fst值都很低,但Nm值都很高(Nm绝对值1),表明5个群体间存在丰富的基因交流。但宁德群体与浙江沿海的3个群体(嵊山、渔山、温州)的Fst值相对较高,且差异显著(P0.5),表明宁德群体与这3个群体间出现遗传分化。本研究旨在为海洋经济贝类资源的保护管理提供理论依据。  相似文献   
693.
随着海洋生态系统模型的发展,生态变量增多,众多生物过程参数量值的确定成为制约生态环境模拟的瓶颈问题,生态系统结构区域性要求模型中的生态参数具有区域差异。为探究不同海区的关键参数及参数敏感度的空间差异,本研究在渤、黄海建立了ROMS-CoSiNE物理–生物耦合的高分辨率生态系统模型,并对13种生态参数的敏感度空间分布进行分析。结果表明:南黄海中部与渤海及近岸海域的敏感度差异较大。渤海敏感度最大的参数为决定光合速率的浮游植物P-I曲线初始斜率,其次为浮游动物捕食半饱和常数和浮游动物最大捕食率。而南黄海中部敏感度最大的参数为浮游动物最大捕食率,其次为浮游植物死亡率和浮游植物P-I曲线初始斜率。结合敏感度分布及浮游植物生物量收支得出,渤海水体透明度较南黄海偏低、浮游植物生长光限制较强,是引起浮游植物P-I曲线初始斜率敏感度在渤海高于黄海的主要原因。浮游动物最大捕食率及浮游植物死亡率的敏感度空间差异,受渤、黄海浮游植物生物量差异的影响,与生态系统中的高度非线性特征有关。  相似文献   
694.
对南海西南部现代上升流区沉积物柱样BIS-187-61孔有机碳、生物蛋白石、碳酸盐等各沉积组分进行了详细的分析,试图探讨末次间冰期(MIS 5)以来南海西南部夏季上升流影响区沉积过程及其所反映的海洋环境变化过程。研究结果发现,140kaBP以来该孔沉积记录期总体表现为:碳酸盐百分含量冰期低间冰期高,主要受周边陆源物质输入稀释的控制,为典型的"大西洋型碳酸盐旋回",有机碳、生物蛋白石、碳酸钙以及陆源沉积物的堆积速率均在MIS 2期、MIS 4期和MIS 5e期出现高值。其中,MIS 2期和MIS 4期生源和陆源沉积堆积速率增加可能与冰期时冬季风增强及海平面下降导致陆源营养物质输入增加对初级生产力的刺激有关,也可能与陆源物质输入增加对海洋生源颗粒物输出的压载作用增强有关。而MIS 5e期南海海平面高度与现代相仿,间冰期较强的夏季风引起的越南沿岸上升流增强是导致该时段本研究区域表层初级生产力增强,沉积物总堆积速率及各组分堆积速率都相应增加的主要原因。  相似文献   
695.
Human presence, coastal erosion, and tourism activities are increasing the attention to coastal flooding risk. To perform risk assessments, long time series of observed or hindcast wave parameters and tide levels are then necessary. In some cases, only a few years of observation are available, so that observed extreme data are not always representative and reliable. A hindcast system aimed to reconstruct long time series of total tide levels may be of great help to perform robust extreme events analysis and then to protect human life, activities as well as to counteract coastal erosion by means of risk assessments. This work aims to propose a simplified method to hindcast storm surge levels time series in semi-enclosed basins with low computational costs. The method is an extension of a previous work of some of the authors and consists of a mixed approach in which the estimation of storm surge obtained by using the theory of linear dynamic system is corrected by using a statistical method. Both steps are characterized by low computational costs. Nevertheless, the results may be considered reliable enough also in view of the simplicity of the approach. The proposed method has been applied to the Manfredonia case study, a small village located in the Southern Adriatic Italian coast and often prone to coastal flooding events. The comparison of extreme events estimated on the basis of hindcast levels time series is satisfactorily similar to those estimated on the basis of observed tide series.  相似文献   
696.
Accessible high-quality observation datasets and proper modeling process are critically required to accurately predict sea level rise in coastal areas. This study focuses on developing and validating a combined least squares-neural network approach applicable to the short-term prediction of sea level variations in the Yellow Sea, where the periodic terms and linear trend of sea level change are fitted and extrapolated using the least squares model, while the prediction of the residual terms is performed by several different types of artificial neural networks. The input and output data used are the sea level anomalies (SLA) time series in the Yellow Sea from 1993 to 2016 derived from ERS-1/2, Topex/Poseidon, Jason-1/2, and Envisat satellite altimetry missions. Tests of different neural network architectures and learning algorithms are performed to assess their applicability for predicting the residuals of SLA time series. Different neural networks satisfactorily provide reliable results and the root mean square errors of the predictions from the proposed combined approach are less than 2?cm and correlation coefficients between the observed and predicted SLA are up to 0.87. Results prove the reliability of the combined least squares-neural network approach on the short-term prediction of sea level variability close to the coast.  相似文献   
697.
In this paper, effort is made to demonstrate the quality of high-resolution regional ocean circulation model in realistically simulating the circulation and variability properties of the northern Indian Ocean(10°S–25°N,45°–100°E) covering the Arabian Sea(AS) and Bay of Bengal(BoB). The model run using the open boundary conditions is carried out at 10 km horizontal resolution and highest vertical resolution of 2 m in the upper ocean.The surface and sub-surface structure of hydrographic variables(temperature and salinity) and currents is compared against the observations during 1998–2014(17 years). In particular, the seasonal variability of the sea surface temperature, sea surface salinity, and surface currents over the model domain is studied. The highresolution model's ability in correct estimation of the spatio-temporal mixed layer depth(MLD) variability of the AS and BoB is also shown. The lowest MLD values are observed during spring(March-April-May) and highest during winter(December-January-February) seasons. The maximum MLD in the AS(BoB) during December to February reaches 150 m (67 m). On the other hand, the minimum MLD in these regions during March-April-May becomes as low as 11–12 m. The influence of wind stress, net heat flux and freshwater flux on the seasonal variability of the MLD is discussed. The physical processes controlling the seasonal cycle of sea surface temperature are investigated by carrying out mixed layer heat budget analysis. It is found that air-sea fluxes play a dominant role in the seasonal evolution of sea surface temperature of the northern Indian Ocean and the contribution of horizontal advection, vertical entrainment and diffusion processes is small. The upper ocean zonal and meridional volume transport across different sections in the AS and BoB is also computed. The seasonal variability of the transports is studied in the context of monsoonal currents.  相似文献   
698.
This study deals with a unusual cooling event after Typhoon Mujigea passed over the northern South China Sea(SCS) in October 2015. We analyze the satellite sea surface temperature(SST) time series from October 3 to 18,2015 and find that the cooling process in the coastal ocean had two different stages. The first stage occurred immediately after typhoon passage on October 3, and reached a maximum SST drop of –2℃ on October 7 as the usual cold wake after typhoon. The second stage or the unusual extended cooling event occurred after 7d of the typhoon passage, and lasted for 5d from October 10 to 15. The maximum SST cooling was –4℃ and occurred after 12d of typhoon passage. The mechanism analysis results indicate that after landing and moving northwestward to the Yunnan-Guizhou Plateau(YGP), Typhoon Mujigea(2015) met the westerly wind front on October 5. The lowpressure and positive-vorticity disturbances to the front triggered meridional air flow and low-pressure trough,thus induced a katabatic cold jet downward from the Qinghai-Tibet Plateau(QTP) passing through the YGP to the northwestern SCS. The second cooling reached the maximum SST drop 4d later after the maximum air temperature drop of –9℃ on October 11. The simultaneous air temperature and SST observations at three coastal stations reveal that it is this katabatic cold jet intrusion to lead the unusual SST cooling event.  相似文献   
699.
卡里马塔海峡水体交换的季节变化   总被引:2,自引:0,他引:2  
Four trawl-resistant bottom mounts, with acoustic Doppler current profilers(ADCPs) embedded, were deployed in the Karimata Strait from November 2008 to June 2015 as part of the South China Sea-Indonesian Seas Transport/Exchange and Impact on Seasonal Fish Migration(SITE) Program, to estimate the volume and property transport between the South China Sea and Indonesian seas via the strait. The observed current data reveal that the volume transport through the Karimata Strait exhibits significant seasonal variation. The winteraveraged(from December to February) transport is –1.99 Sv(1 Sv=1×10~6 m~3/s), while in the boreal summer(from June to August), the average transport is 0.69 Sv. Moreover, the average transport from January 2009 to December2014 is –0.74 Sv(the positive/negative value indicates northward/southward transport). May and September are the transition period. In May, the currents in the Karimata Strait turn northward, consistent with the local monsoon. In September, the southeasterly trade wind is still present over the strait, driving surface water northward, whereas the bottom flow reverses direction, possibly because of the pressure gradient across the strait from north to south.  相似文献   
700.
So far, large uncertainties of the Indonesian throughflow(ITF) reside in the eastern Indonesian seas, such as the Maluku Sea and the Halmahera Sea. In this study, the water sources of the Maluku Sea and the Halmahera Sea are diagnosed at seasonal and interannual timescales and at different vertical layers, using the state-of-the-art simulations of the Ocean General Circulation Model(OGCM) for Earth Simulator(OFES). Asian monsoon leaves clear seasonal footprints on the eastern Indonesian seas. Consequently, the subsurface waters(around 24.5σ_θ and at ~150 m) in both the Maluku Sea and the Halmahera Sea stem from the South Pacific(SP) during winter monsoon, but during summer monsoon the Maluku Sea is from the North Pacific(NP), and the Halmahera Sea is a mixture of waters originating from the NP and the SP. The monsoon impact decreases with depth, so that in the Maluku Sea, the intermediate water(around 26.8σ_θ and at ~480 m) is always from the northern Banda Sea and the Halmahera Sea water is mainly from the SP in winter and the Banda Sea in summer. The deep waters(around27.2σ_θ and at ~1 040 m) in both seas are from the SP, with weak seasonal variability. At the interannual timescale,the subsurface water in the Maluku Sea originates from the NP/SP during El Ni?o/La Ni?a, while the subsurface water in the Halmahera Sea always originates from the SP. Similar to the seasonal variability, the intermediate water in Maluku Sea mainly comes from the Banda Sea and the Halmahera Sea always originates from the SP. The deep waters in both seas are from the SP. Our findings are helpful for drawing a comprehensive picture of the water properties in the Indonesian seas and will contribute to a better understanding of the ocean-atmosphere interaction over the maritime continent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号