首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
地球物理   12篇
地质学   8篇
海洋学   4篇
自然地理   1篇
  2021年   1篇
  2020年   3篇
  2018年   1篇
  2017年   1篇
  2014年   2篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有25条查询结果,搜索用时 663 毫秒
11.
Sulfide and sulfate ore samples collected from the Hakurei deposit of the Bayonnaise knoll were examined for the occurrence and chemical composition of minerals, including the sulfur isotopes and the microthermometry of fluid inclusions. Massive sulfide ore, mineralized volcanic rock, and anhydrite ore occur in descending order, from the seafloor to the bottom of the cored sample. The massive sulfide ore is dominated by sphalerite and accompanied by tennantite, chalcopyrite, and pyrite with lesser amounts of galena, enargite, and covellite. Amorphous silica is commonly precipitated on the surface of the sulfide minerals. As‐bearing minerals such as tennantite, enargite, and luzonite are common, while galena and Sb‐rich tetrahedrite are scarce. The mineral abundance and chemical composition of the minerals differs from that found in chimneys of the deposit. The sulfur isotope compositions in the minerals are +3.1–5.2‰ for sulfides and +19.6–21.8‰ for sulfate minerals. The homogeneous nature of the sulfur isotopes suggests that sulfur incorporated in the Hakurei deposit came from the reduction of aqueous sulfate in seawater.  相似文献   
12.
13.
Subduction initiation and ophiolite crust: new insights from IODP drilling   总被引:1,自引:0,他引:1  
International Ocean Discovery Program (IODP) Expedition 352 recovered a high-fidelity record of volcanism related to subduction initiation in the Bonin fore-arc. Two sites (U1440 and U1441) located in deep water nearer to the trench recovered basalts and related rocks; two sites (U1439 and U1442) located in shallower water further from the trench recovered boninites and related rocks. Drilling in both areas ended in dolerites inferred to be sheeted intrusive rocks. The basalts apparently erupted immediately after subduction initiation and have compositions similar to those of the most depleted basalts generated by rapid sea-floor spreading at mid-ocean ridges, with little or no slab input. Subsequent melting to generate boninites involved more depleted mantle and hotter and deeper subducted components as subduction progressed and volcanism migrated away from the trench. This volcanic sequence is akin to that recorded by many ophiolites, supporting a direct link between subduction initiation, fore-arc spreading, and ophiolite genesis.  相似文献   
14.
Abstract The Miura Group (Miocene-Pliocene) of south-central Japan shows a number of unique lithological and structural features. The group is composed of volcanic arc-derived marine sediments, and those in the south of the Mineoka Tectonic Belt particularly show various kinds of complex structures such as layer-parallel faults, thrust duplexes, imbricate thrusts and vein structures, yet the degree of compaction of the sediments is still remarkably low. These structures involve deformations at a very early stage and at shallow depths. They arose shortly after sedimentation within the Izu fore arc, and continued during accretion to the Honshu fore arc. The deformational stages are classified here into three stages, the first comprises bedding-parallel faulting associated with gravitational sliding and sediment injection. The first vein structures formed during this stage in the Izu fore arc area. These structures are cut by features developed during the second and third stages: especially thrusting, including duplex and imbricate thrusts. This horizontal shortening occurred during the accretionary prism formation on the subduction plate boundary. The second vein structures formed during this stage in the accretionary prism formation. The origin of the vein structures was discussed both by field observation and laboratory experiments. The latter suggests earthquake origin and the formative process is explained in relation to the field evidence.  相似文献   
15.
Conditions for the formation of large meander (LM) of the Kuroshio are inferred from observational data, mainly obtained in the 1990s. Propagation of the small meander of the Kuroshio from south of Kyushu to Cape Shiono-misaki is a prerequisite for LM formation, and three more conditions must be satisfied. (1) The cold eddy carried by small meander interacts with the cold eddy in Enshu-nada east of the cape. During and just after the propagation of small meander, (2) the Kuroshio axis in the Tokara Strait maintains the northern position and small curvature, and (3) current velocity of the Kuroshio is not quite small. If the first condition is not satisfied, the Kuroshio path changes little. If the first condition is satisfied, but the second or third one is not, the Kuroshio transforms to the offshore non-large-meander path, not the LM path. All three conditions must be satisfied to form the large meander. For continuance of the large meander, the Kuroshio must maintain the small curvature of current axis in the Tokara Strait and a medium or large range of velocity and transport. These conditions for formation and continuance may be necessary for the large meander to occur. Moreover, effects of bottom topography on position and structure of the Kuroshio are described. Due to topography, the Kuroshio changes horizontal curvature and vertical inclination of current axis in the Tokara Strait, and is confined into either of two passages over the Izu Ridge at mid-depth. The former contributes to the second condition for the LM formation.  相似文献   
16.
Acid alteration areas accompanying Quaternary volcanoes are widespread in the western Izu Peninsula, central Japan. The Ugusu alteration area is the largest among them and is mined for “silica stone” at the silica body in the core of the alteration area. Silica zone defined by previous studies is subdivided into highly leached brecciated silica zone and residual silica zone, which extend along a NNW‐SSE–NNE‐SSW direction of fractures/faults. Fe‐rich, alunite, advanced argillic alteration, and intermediate argillic alteration zones occur toward the outside surrounding the two silica zones. The ascent of acid hydrothermal fluid would be responsible for the silica zones and surrounding alteration zones at an earlier stage, while the hydrothermal brecciation and silica veins were caused by a limited supply of silica‐saturated fluids at later stages. Based on the available mineral stability relations and fluid inclusion thermometries, the formation temperatures are estimated to be: >300°C for the residual silica zone; >290°C for the diaspore association in the advanced argillic alteration zone; and <260°C for the kaolinite association in the intermediate argillic alteration zone. The later stage quartz druses have been formed at 200–260°C. The Ugusu–Fukata acid hydrothermal systems were active at 1.5–1.2 Ma, which were temporally related to the Tanaba Andesite volcanism. Hydrothermal system at the Seikoshi gold–silver deposit survived until 0.7 Ma after the volcanism. In the western half of the Izu Peninsula, subduction of the Philippine Sea plate underneath the Suruga Trough caused nearly N–S‐trending maximum horizontal compressive stress (σHmax) and the resultant formation of similarly trending alteration areas and Au‐Ag vein‐type deposits in the Ugusu‐Toi‐Seikoshi area. From a practical viewpoint, at the Ugusu silica stone deposit, the fracture‐controlled vertical morphology of the silica body provides an important guide for exploration. Because the alteration zones occur both in the lower and upper sides of the silica bodies, it is important to make sure to which side the alteration zones correspond.  相似文献   
17.
本文对日本中部冲绳海沟,小笠原弧的水了海山、爱丽斯泉与太平洋中央海岭威玛斯海盆等不同大地构造单元中的热水系,运用C,Ne,N等元素-同位素地球化学方法进行分析,对比和研究,并探讨了热水系中碳氮的来源,为大地构造单元的划分对比,提供了新的地球化学依据。  相似文献   
18.
Ascertaining the emplacement mechanism of oceanic basaltic lavas is important in understanding how ocean floor topography is produced and oceanic plates evolve, particularly during the early stages of crustal development of a supra-subduction zone. A detailed study of the volcanic stratigraphy at International Ocean Discovery Program (IODP) Site U1438 in the Amami Sankaku Basin, west of the Kyushu–Palau Ridge, has revealed the development of lava accretion and ridge topography on the Philippine Sea plate at about 49 Ma. Igneous basement rocks penetrated at Site U1438 are the uppermost 150 m of ~6 km-thick oceanic crust, and comprise, in a downhole direction, sheet flows (12.6 m), lobate sheet flows (61.3 m), pillow lavas (50.7 m), and thin sheet flows (25.3 m). The lowermost sheet flows are intercalated with layers of limestone and epiclastic tuff. Lithofacies analysis reveals that the lowermost sheet flows, limestone, and tuff formed on an axial rise, the pillow lavas were emplaced on a ridge slope, and the lobate sheet flows formed off ridge on an abyssal plain. The lithofacies of the basement basalt corresponds to the upper portions of fast-spreading oceanic crust, suggesting that subduction initiation was associated with intermediate to fast rates of seafloor spreading. The surface sheet flows are olivine–clinopyroxene-phyric basalt and differ from the lower basalt flows that contain phenocrysts of olivine and plagioclase, with or without clinopyroxene. The depleted chrome-spinel composition and olivine–clinopyroxene phenocryst assemblage in the surface sheet flows suggests a slight contribution of water for magma generation not present for the lower basalt flows. Considering the lithological difference between the backarc and forearc oceanic crust in the Izu–Bonin–Mariana arc, with sheet flow dominant in the former, seafloor spreading occurred faster in the later stage of subduction initiation.  相似文献   
19.
The mechanism of a characteristic sea level response (barotropic coastal ocean response) to wind field fluctuation around the tip of the Izu Peninsula observed during the middle of December 2000 to the middle of January 2001 was investigated based on three types of numerical experiments using the Princeton Ocean Model with various parameters. The response was characterized by the relaxation of sea level falling (rising) during eastward upwelling (westward downwelling) favorable wind regime. Analyses of quasi-realistic numerical model results in terms of the vertically integrated momentum balances and vorticity balance for the barotropic mode revealed that: 1) development/abatement of two anomalous circulations generated around the tip of the Izu Peninsula controls the sea level response through the acceleration/deceleration of a quasi-geostrophic barotropic coastal current between the circulations; 2) nonlinear vorticity advection by the Kuroshio Current and by the coastal current, coupled with vorticity diffusion, decelerates the quasi-geostrophic coastal current in the latter half of the wind regimes, which induces the relaxation of sea level rise/fall. The results of the quasi-realistic numerical experiment suggest that an analysis of the vorticity balance for the barotropic mode contributes to a better understanding of sea level responses to wind in coastal regions with strong currents and complex topography. In addition, a numerical experiment with idealized spatially uniform density stratification and a quasi-realistic wind field shows that if the Kuroshio Current had been shifted far offshore from the Izu Peninsula during the observation period, westward propagating continental shelf waves would have controlled the coastal sea level response.  相似文献   
20.
The Japanese archipelago underwent two arc–arc collisions during the Neogene. Southwest Honshu arc collided with the Izu‐Bonin‐Mariana arc and the northeast Honshu arc collided with the Chishima arc. The complicated geological structure of the South Fossa Magna region has been attributed to the collision between the Izu‐Bonin‐Mariana arc and the southwest Honshu arc. Understanding the geotectonic evolution of this tectonically active region is crucial for delineating the Neogene tectonics of the Japanese archipelago. Many intrusive granitoids occur around the Kofu basin, in the South Fossa Magna region. Although the igneous ages of these granitoids have been mainly estimated through biotite and hornblende K–Ar dating, here, we perform U–Pb dating of zircon to determine the igneous ages more precisely. In most cases, the secondary post‐magmatic overprint on the zircon U–Pb system was minor. Based on our results, we identify four groups of U–Pb ages: ca 15.5 Ma, ca 13 Ma, ca 10.5 Ma, and ca 4 Ma. The Tsuburai pluton belongs to the first group, and its age suggests that the granite formation within the Izu‐Bonin‐Mariana arc dates back to at least 15.5 Ma. The granitoids of the second group intruded into the boundary between the Honshu arc and the ancient Izu‐Bonin‐Mariana arc, suggesting that the arc–arc collision started by ca 13 Ma. As in the case of the Kaikomagatake pluton, the Chino pluton likely corresponds to a granodiorite formed in a rear‐arc setting in parallel with the other granodiorites of the third group. The U–Pb age of the Kogarasu pluton, which belongs to the fourth group, is the same as those of the Tanzawa tonalitic plutons. This might support a syncollisional rapid granitic magma formation in the South Fossa Magna region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号