首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1118篇
  免费   293篇
  国内免费   108篇
测绘学   39篇
大气科学   26篇
地球物理   579篇
地质学   544篇
海洋学   44篇
天文学   3篇
综合类   35篇
自然地理   249篇
  2024年   2篇
  2023年   4篇
  2022年   20篇
  2021年   16篇
  2020年   25篇
  2019年   45篇
  2018年   53篇
  2017年   46篇
  2016年   48篇
  2015年   44篇
  2014年   65篇
  2013年   68篇
  2012年   54篇
  2011年   79篇
  2010年   70篇
  2009年   71篇
  2008年   74篇
  2007年   74篇
  2006年   94篇
  2005年   66篇
  2004年   65篇
  2003年   58篇
  2002年   39篇
  2001年   40篇
  2000年   41篇
  1999年   41篇
  1998年   25篇
  1997年   29篇
  1996年   41篇
  1995年   32篇
  1994年   14篇
  1993年   16篇
  1992年   10篇
  1991年   9篇
  1990年   11篇
  1989年   3篇
  1988年   10篇
  1987年   4篇
  1986年   8篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1954年   1篇
排序方式: 共有1519条查询结果,搜索用时 718 毫秒
161.
Extreme waves caused by tsunamis and storm surges can lead to soil failures in the near‐shore region, which may have severe impact on coastal environments and communities. Multiphase flows in deformable porous media involve several coupled processes and multiple time scales, which are challenging for numerical simulations. The objective of this study is to investigate the roles of the various processes and their interactions in multiphase flows in unsaturated soils under external wave loading, via theoretical time‐scale analysis and numerical simulations. A coupled geomechanics–multiphase flow model based on conservation laws is used. Theoretical analysis based on coupled and decoupled models demonstrates that transient and steady‐state responses are governed by pore pressure diffusion and saturation front propagation, respectively, and that the two processes are essentially decoupled. Numerical simulations suggest that the compressibility of the pore fluids and the deformation of the soil skeleton are important when the transient responses of the media are of concern, while the steady‐state responses are not sensitive to these factors. The responses obtained from the fully coupled numerical simulations are explained by a simplified time‐scale analysis based on coupled and decoupled models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
162.
Two formulations for calculating dynamic response of a cylindrical cavity in cross‐anisotropic porous media based on complex functions theory are presented. The basis of the method is the solution of Biot's consolidation equations in the complex plane. Employing two groups of potential functions for solid skeleton and pore fluid (each group includes three functions), the uw formulation of Biot's equations are solved. Difference of these two solutions refers to use of two various potential functions. Equations for calculating stress, displacement and pore pressure fields of the medium are mentioned based on each two formulations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
163.
The deformation of the solid matrix affects the fluid pore pressure and flow by altering the pore volume. Such interaction in turn affects the storage of groundwater in the void space. Obviously, this subject is of interest in groundwater hydrology. This paper describes an investigation of the effect of aquifer heterogeneity on the variability of the fluid pressure head and solid's volume strain, where the assumption of a constant vertical total stress leads to a relatively simple relationship between changes in solid's volume strain and fluid pressure head. To solve the problem analytically, focus is placed on the one‐dimensional models. It is found from our closed‐form solutions that the variance and correlation length of the log hydraulic conductivity are important in increasing the variability of pressure head and solid's volume strain. It is hoped that our findings will provide a basic framework for understanding and quantifying field‐scale volume strain processes and be useful in stimulating further research in this area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
164.
河西地区重力动态变化的二维离散小波多尺度分解   总被引:7,自引:5,他引:2  
采用二维离散小波的多尺度分解技术,对1994~1995年和2002~2003年的河西地区重力动态变化进行分解,提取该地区不同层次的重力动态变化异常,结果反映了不同深度在一定尺度意义上的介质密度的动态变化分布。  相似文献   
165.
Inglis [1] has solved the problem of distribution of stress in an elastic plate around an elliptical hole. His works clarify the role of cracks in the failure of an elastic material. However, his solution cannot be applied to saturated clay because he considers only total stresses, while, in saturated clay, the criterion of rupture should be expressed in terms of effective and not total stresses. The solution of Atkinson and Craster [2] using Biot's poroelasticity theory, shows that there is no high pore pressure in the vicinity of the crack tips for saturated clay. The major difference between this approach and the Biot's theory of is that, in saturated clay, strain is a function of the variation of the effective stress [3], while, in poroelastic media, strain is only a function of the variation of the total stress [4, Equation 2.2]. Also in their solution there is continuity between the pore fluid and the inner fluid in the crack. Their solution is valid for poroelastic media involving a movement of the pore fluid. In our solution there is no movement of the pore fluid (Undrained condition). In this paper we have solved the same problem as Inglis [1], but for the particular case of saturated clay obeying elastic law. By solving this problem we obtained the expressions for pore pressure, effective stress, total stress and displacements. The results show that not only the total stress but also the pore pressure and the effective stress are also high in the vicinity of the crack tips. A new failure criterion, based on Griffith's strain energy principle [5] and maximum tensile stress [6], valid for saturated clay is developed in this paper. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
166.
Overall properties of heterogeneous material   总被引:1,自引:0,他引:1  
  相似文献   
167.
煤系介质条件作为构造形成和发育的的物质基础,必然影响断层的发育。以陕西下峪口煤矿2号煤层为对象,研究了煤层围岩介质参数与煤层小断层间的关系,确定了控制2号煤层小断层发育的4个主要因素,并据此建立了预测小断层发育程度的数学模型。  相似文献   
168.
In this paper the macroscopic elastic properties of injected or cemented sands are derived from the characteristics of the constituents and the analysis of the microstructure using a multi‐scale modelling approach. Particular interest is given to the choice of the representative elementary volume, by relying on existing microstructural data. The periodic homogenization is adopted and required numerical solutions are performed by the finite element method. An assessment of the validity of the multi‐scale approach is achieved through comparison with theoretical and experimental results on cemented and injected granular media reported in the literature. The capabilities of the model are also used to investigate the influence of geometrical and mechanical microscale parameters on the macroscopic behaviour of the treated materials. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
169.
Prestack depth migration is a key technology for imaging complex reservoirs in media with strong lateral velocity variations. Prestack migrations are broadly separated into ray-based and wave-equation-based methods. Because of its efficiency and flexibility, ray-based Kirchhoff migration is popular in the industry. However, it has difficulties in dealing with the multi-arrivals, caustics and shadow zones. On the other hand, wave-equation-based methods produce images superior to that of the ray-based methods, but they are expensive numerically, especially methods based on two-way propagators in imaging large regions. Therefore, reverse time migration algorithms with Gaussian beams have recently been proposed to reduce the cost, as they combine the high computational efficiency of Gaussian beam migration and the high accuracy of reverse time migration. However, this method was based on the assumption that the subsurface is isotropic. As the acquired azimuth and maximum offsets increase, taking into account the influence of anisotropy on seismic migration is becoming more and more crucial. Using anisotropic ray tracing systems in terms of phase velocity, we proposed an anisotropic reverse time migration using the Gaussian beams method. We consider the influence of anisotropy on the propagation direction and calculate the amplitude of Gaussian beams with optimized correlation coefficients in dynamic ray tracing, which simplifies the calculations and improves the applicability of the proposed method. Numerical tests on anisotropic models demonstrate the efficiency and accuracy of the proposed method, which can be used to image complex structures in the presence of anisotropy in the overburden.  相似文献   
170.
设计了一个简单的三维模型:三维低阻异常体和高阻异常体位于一维层状介质模型中,以"十"字型和"米"字型观测剖面方式作为模拟方式,开展模型一维、二维、三维反演技术有效性对比试验,其中一维反演计算采用自适应正则化(ARIA)反演,二维反演计算采用非线性共轭梯度(NLCG)反演,三维反演计算采用REBOCC三维反演,将剖面下方不同的反演结果与原始模型进行对比分析,发现:在该模型条件下,一维和二维反演都能得到反映模型真实信息的结果,REBOCC三维反演更偏向重建原始模型的宏观电性特征;在一维反演结果中,对于深部的电性结构特征,通常TE极化模式的反演结果好于TM极化模式,TE/TM几何平均值反演结果介于前两者之间;在二维反演结果中,通常TM极化模式的反演结果好于TE极化模式,TE/TM联合模式反演结果与TM极化模型相当,甚至更好;模型REBOCC三维反演相比一维、二维反演更易受反演结果多解性影响,REBOCC三维反演结果偏向重建原始模型的宏观电性特征。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号