正Qinghai Province has unique salt lake resources in China characterized by multicomponent,big storage,multi types and easy exploitation.These salt lake resources are concentrated in Qaidam Basin. 相似文献
The understanding of the thermo-hydro-mechanical behaviour of a clay barrier is needed for the prediction of its final in situ properties after the hydration and thermal transient in a radioactive waste repository.
As part of the CEC 1990–1994 R&D programme on radioactive waste management and storage, the CEA (Fr), CIEMAT (Sp), ENRESA (Sp), SCK · CEN (B), UPC (Sp) and UWCC (UK) have carried out a joint project on unsaturated clay behaviour (Volckaert et al., 1996). The aim of the study is to analyse and model the behaviour of a clay-based engineered barrier during its hydration phase under real repository conditions. The hydro-mechanical and thermo-hydraulic models developed in this project have been coupled to describe stress/strain behaviour, moisture migration and heat transfer. A thermo-hydraulic model has also been coupled to a geochemical code to describe the migration and formation of chemical species.
In this project, suction-controlled experiments have been performed on Boom clay (B), FoCa clay (Fr) and Almeria bentonite (Sp). The aim of these experiments is to test the validity of the interpretive model developed by Alonso and Gens (Alonso et al., 1990), and to build a database of unsaturated clay thermo-hydro-mechanical parameters. Such a database can then be used for validation exercises in which in situ experiments are simulated.
The Boom clay is a moderately swelling clay of Rupellian age. It is studied at the SCK · CEN in Belgium as a potential host rock for a radioactive waste repository. In this paper, suction-controlled experiments carried out on Boom clay by SCK · CEN are described. SCK · CEN has performed experiments to measure the relation between suction, water content and temperature and the relation between suction, stress and deformation. The applied suction-control techniques and experimental setups are detailed. The results of these experiments are discussed in the perspective of the model of Alonso and Gens. The influence of temperature on water uptake was rather small. The measured swelling-collapse behaviour can be explained by the Alonso and Gens model. 相似文献
The elastic and structural behaviour of the synthetic zeolite CsAlSi5O12 (a = 16.753(4), b = 13.797(3) and c = 5.0235(17) Å, space group Ama2, Z = 2) were investigated up to 8.5 GPa by in situ single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions. No phase-transition occurs within the P-range investigated. Fitting the volume data with a third-order Birch–Murnaghan equation-of-state gives: V0 = 1,155(4) Å3, KT0 = 20(1) GPa and K′ = 6.5(7). The “axial moduli” were calculated with a third-order “linearized” BM-EoS, substituting the cube of the individual lattice parameter (a3, b3, c3) for the volume. The refined axial-EoS parameters are: a0 = 16.701(44) Å, KT0a = 14(2) GPa (βa = 0.024(3) GPa?1), K′a = 6.2(8) for the a-axis; b0 = 13.778(20) Å, KT0b = 21(3) GPa (βb = 0.016(2) GPa?1), K′b = 10(2) for the b-axis; c0 = 5.018(7) Å, KT0c = 33(3) GPa (βc = 0.010(1) GPa?1), K′c = 3.2(8) for the c-axis (KT0a:KT0b:KT0c = 1:1.50:2.36). The HP-crystal structure evolution was studied on the basis of several structural refinements at different pressures: 0.0001 GPa (with crystal in DAC without any pressure medium), 1.58(3), 1.75(4), 1.94(6), 3.25(4), 4.69(5), 7.36(6), 8.45(5) and 0.0001 GPa (after decompression). The main deformation mechanisms at high-pressure are basically driven by tetrahedral tilting, the tetrahedra behaving as rigid-units. A change in the compressional mechanisms was observed at P ≤ 2 GPa. The P-induced structural rearrangement up to 8.5 GPa is completely reversible. The high thermo-elastic stability of CsAlSi5O12, the immobility of Cs at HT/HP-conditions, the preservation of crystallinity at least up to 8.5 GPa and 1,000°C in elastic regime and the extremely low leaching rate of Cs from CsAlSi5O12 allow to consider this open-framework silicate as functional material potentially usable for fixation and deposition of Cs radioisotopes. 相似文献