首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   758篇
  免费   81篇
  国内免费   69篇
测绘学   26篇
大气科学   13篇
地球物理   327篇
地质学   219篇
海洋学   66篇
天文学   6篇
综合类   24篇
自然地理   227篇
  2024年   7篇
  2023年   7篇
  2022年   19篇
  2021年   26篇
  2020年   21篇
  2019年   22篇
  2018年   33篇
  2017年   30篇
  2016年   31篇
  2015年   25篇
  2014年   49篇
  2013年   55篇
  2012年   11篇
  2011年   25篇
  2010年   35篇
  2009年   37篇
  2008年   28篇
  2007年   35篇
  2006年   31篇
  2005年   30篇
  2004年   25篇
  2003年   37篇
  2002年   28篇
  2001年   25篇
  2000年   33篇
  1999年   27篇
  1998年   31篇
  1997年   32篇
  1996年   18篇
  1995年   23篇
  1994年   16篇
  1993年   18篇
  1992年   12篇
  1991年   8篇
  1990年   6篇
  1989年   4篇
  1988年   4篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
排序方式: 共有908条查询结果,搜索用时 109 毫秒
41.
Published accounts of outburst floods from glacier-dammed lakes show that a significant number of such floods are associated not with drainage through a tunnel incised into the basal ice—the process generally assumed—but rather with ice-marginal drainage, mechanical failure of part of the ice dam, or both. Non-tunnel floods are strongly correlated with formation of an ice dam by a glacier advancing from a tributary drainage into either a main river valley or a pre-existing body of water (lake or fiord). For a given lake volume, non-tunnel floods tend to have significantly higher peak discharges than tunnel-drainage floods. Statistical analysis of data for floods associated with subglacial tunnels yields the following empirical relation between lake volume V and peak discharge Qp : Qp = 46V0.66 (r2 = 0.70), when Qp is expressed in metres per second and V in millions of cubic metres. This updates the so-called Clague–Mathews relation. For non-tunnel floods, the analogous relation is Qp = 1100V0.44 (r2 = 0.58). The latter relation is close to one found by Costa (1988) for failure of constructed earthen dams. This closeness is probably not coincidental but rather reflects similarities in modes of dam failure and lake drainage. We develop a simple physical model of the breach-widening process for non-tunnel floods, assuming that (1) the rate of breach widening is controlled by melting of the ice, (2) outflow from the lake is regulated by the hydraulic condition of critical flow where water enters the breach, and (3) the effect of lake temperature may be dealt with as done by Clarke (1982). Calculations based on the model simulate quite well outbursts from Lake George, Alaska. Dimensional analysis leads to two approximations of the form QpVqf(hi, θ0), where q = 0.5 to 0.6, hi is initial lake depth, θ0 is lake temperature, and the form of f (hi, θ0) depends on the relative importance of viscous dissipation and the lake's thermal energy in determining the rate of breach opening. These expressions, along with the regression relations, should prove useful for assessing the probable magnitude of breach-type outburst floods.  相似文献   
42.
乌兰布和沙漠东南缘湖泊群消涨与驱动因素   总被引:1,自引:1,他引:0  
湖泊是对环境变化响应敏感的地理单元,湖泊消长与响应机制研究对维持区域生态系统稳定具有重要意义。基于1999—2018年Landsat、气象、水文和农业种植面积等多种数据,在ArcGIS平台中利用改进归一化差异水体指数(MNDWI)及目视修正方法提取了乌兰布和沙漠东南缘湖泊群空间信息,运用统计学方法对主要驱动因子与湖泊消涨的关系进行了分析。结果表明:1999—2018年乌兰布和沙漠东南缘大湖泊(面积大于100 hm2)在面积上占优势,小湖泊(面积小于100 hm2)在数量占优势。趋势分析表明大湖泊面积和数量呈显著性减少趋势(相关系数分别为R=0.624 > R18,0.01=0.561和R=0.648 > R18,0.01=0.561);小湖泊减少趋势不显著。在空间分布格局上,研究区中部是大湖泊稳定分布区,大湖泊数量11~23个,面积2 208~4 581 hm2。研究区湖泊消长主要受到年实际引黄水量、农田面积和地下水埋深的影响。其中,实际引黄(河)水量影响所有湖泊(P≤0.01),而农田面积和地下水埋深分别对大湖泊(P≤0.01)和小湖泊(P≤0.05)影响显著。用这3个因子分别构建的多元回归模型显示,在大、小湖泊面积和数量预测方面,精度分别达到75.7%和60.5%以上。  相似文献   
43.
The relatively rapid recession of glaciers in the Himalayas and formation of moraine dammed glacial lakes(MDGLs) in the recent past have increased the risk of glacier lake outburst floods(GLOF) in the countries of Nepal and Bhutan and in the mountainous territory of Sikkim in India. As a product of climate change and global warming, such a risk has not only raised the level of threats to the habitation and infrastructure of the region, but has also contributed to the worsening of the balance of the unique ecosystem that exists in this domain that sustains several of the highest mountain peaks of the world. This study attempts to present an up to date mapping of the MDGLs in the central and eastern Himalayan regions using remote sensing data, with an objective to analyse their surface area variations with time from 1990 through 2015, disaggregated over six episodes. The study also includes the evaluation for susceptibility of MDGLs to GLOF with the least criteria decision analysis(LCDA). Forty two major MDGLs, each having a lake surface area greater than 0.2 km2, that were identified in the Himalayan ranges of Nepal, Bhutan, and Sikkim, have been categorized according to their surface area expansion rates in space and time. The lakes have been identified as located within the elevation range of 3800 m and6800 m above mean sea level(a msl). With a total surface area of 37.9 km2, these MDGLs as a whole were observed to have expanded by an astonishing 43.6% in area over the 25 year period of this study. A factor is introduced to numerically sort the lakes in terms of their relative yearly expansion rates, based on their interpretation of their surface area extents from satellite imageries. Verification of predicted GLOF events in the past using this factor with the limited field data as reported in literature indicates that the present analysis may be considered a sufficiently reliable and rapid technique for assessing the potential bursting susceptibility of the MDGLs. The analysis also indicates that, as of now, there are eight MDGLs in the region which appear to be in highly vulnerable states and have high chances in causing potential GLOF events anytime in the recent future.  相似文献   
44.
Journal of Geographical Sciences - This article describes the lake basins of the Jom-Bolok volcanic region in the East Sayan (the largest manifestation of the Holocene eruptions in Central Asia)....  相似文献   
45.
It is important to identify and locate glacial lakes for assessing any potential hazard. This study presents a combination of semi-automatic method Double-Window Flexible Pace Search (DFPS) and edge detection technique to identify glacial lakes using Sentinel 2A satellite data. Initially, Normalized Difference Water Index (NDWI) has been used to identify water and non-water areas, while DFPS and Edge detection technique has been used to identify an optimum threshold value to distinguish between water and shadow areas. The optimal threshold from DFPS process is 0.21, while threshold value of gradient magnitude using edge detection process is 0.318. The number of glacial lakes identified using the above algorithm is in close agreement with previously published results on glacial lakes in Gangotri glacier using different techniques. Thus, a combination of DFPS and edge detection process has successfully segregated glacial lakes from other features present in Gangotri glacier.  相似文献   
46.
The underwater light regime of a Mediterranean coastal lagoon (Albufera des Grau, Balearic Islands) was studied during four years in order to characterise the spatial and temporal variations in the light attenuation coefficient (K) and to assess the relative contribution of the different water components to total light attenuation.  相似文献   
47.
四川汶川“5.12”地震滑坡堰塞湖遥感监测分析   总被引:5,自引:0,他引:5  
运用可见光、雷达和航片等不同空间分辨率的多源遥感数据,对四川汶川"5.12"地震灾区因地震诱发形成的大型堰塞湖进行了遥感监测,对堰塞湖发生的地点、数量以及空间分布规律进行了讨论。重点对唐家山堰塞湖进行了动态监测,提取了其堰塞湖回水长度、水面面积与水量等信息,并对这一结果进行了详细分析,为地震滑坡堰塞湖科学处置与减灾决策提供了科学依据。  相似文献   
48.
49.
三峡水库汛期控制水位及运用条件   总被引:2,自引:2,他引:2       下载免费PDF全文
王俊  郭生练 《水科学进展》1990,31(4):473-480
随着长江上游梯级水库的陆续建成投运,三峡水库的水文情势和功能需求与设计条件相比发生了显著变化,仍维持固定的汛限水位运行已不能适应新形势需求。本文通过辨析三峡水库设计阶段汛限水位的设置条件,挖掘流域洪水特性和洪水遭遇规律,论证三峡水库汛期运行水位动态控制的可行性。结果表明:① 三峡水库设计推求的汛限水位145 m的适用条件是应对流域性大洪水,而流域性洪水发生概率小且特征明显,可以通过水文水情分析提前预判。② 根据流域洪水类型、洪水分期和遭遇规律,预判发生区域性大洪水时,三峡水库6月初至梅雨期结束汛限水位按145 m设置,从梅雨期结束后逐渐提高水位,8月20日后过渡到155 m。③ 在考虑上游水库群联合调度和气象水文预报的配合下,正常年份三峡水库汛期运行水位可在155 m上下浮动,并考虑提前蓄水。④ 三峡水库汛期运行水位动态控制,不会增加防洪风险和库区淤积风险,对中下游江湖关系和水文情势有利,可显著提高发电、航运、生态保护和供水等综合利用效益。  相似文献   
50.
Lacustrine deposits of the Malanzán Formation record sedimentation in a small and narrow mountain paleovalley. Lake Malanzán was one of several water bodies formed in the Paganzo Basin during the Late Carboniferous deglaciation. Five sedimentary facies have been recognized. Facies A (Dropstones-bearing laminated mudstones) records deposition from suspension fall-out and probably underflow currents coupled with ice-rafting processes in a basin lake setting. Facies B (Ripple cross-laminated sandstones and siltstones) was deposited from low density turbidity currents in a lobe fringe environment. Facies C (Massive or graded sandstones) is thought to represent sedimentation from high and low density turbidity currents in sand lobes. Facies D (Folded sandstones and siltstones) was formed from slumping in proximal lobe environments. Facies E (Wave-rippled sandstones) records wave reworking of sands supplied by turbidity currents above wave base level.The Lake Malanzán succession is formed by stacked turbidite sand lobe deposits. These lobes were probably formed in proximal lacustrine settings, most likely relatively high gradient slopes. Paleocurrents indicate a dominant direction from cratonic areas to the WSW. Although the overall sequence shows a regressive trend from basin fine-grained deposits to deltaic and braided fluvial facies, individual lobe packages lack of definite vertical trends in bed thickness and grain size. This fact suggests aggradation from multiple-point sources, rather than progradation from single-point sources. Sedimentologic and paleoecologic evidence indicate high depositional rate and sediment supply. Deposition within the lake was largely dominated by event sedimentation. Low diversity trace fossil assemblages of opportunistic invertebrates indicate recolonization of event beds under stressed conditions.Three stages of lake evolutionary history have been distinguished. The vertical replacement of braided fluvial deposits by basinal facies indicates high subsidence and a lacustrine transgressive episode. This flooding event was probably linked to a notable base level rise during postglacial times. The second evolutionary stage was typified by the formation of sand turbidite lobes from downslope mass-movements. Lake history culminates with the progradation of deltaic and braided fluvial systems  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号