首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   40篇
  国内免费   3篇
测绘学   10篇
大气科学   1篇
地球物理   140篇
地质学   2篇
海洋学   4篇
天文学   6篇
自然地理   4篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   7篇
  2017年   7篇
  2016年   11篇
  2015年   9篇
  2014年   9篇
  2013年   14篇
  2012年   6篇
  2011年   10篇
  2010年   3篇
  2009年   10篇
  2008年   7篇
  2007年   10篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   7篇
  2002年   5篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   6篇
  1996年   7篇
  1995年   2篇
排序方式: 共有167条查询结果,搜索用时 20 毫秒
131.
132.
In the world, many existing buildings with RC framed structure were designed according to old seismic standards and present structural deficiencies. Buckling Restrained Braces (BRBs) can be effective for seismic upgrading of these structures, as pointed out by many studies. Nevertheless, Eurocode 8 (EC8) does not provide any rules for design of BRBs. This lack represents a big obstacle for application of this seismic upgrading technique in Europe. For this reason, a method for the design of seismic upgrading interventions by BRBs is proposed in this paper. The method is obtained as the best between two variants developed, investigated and compared in this paper. Based on a numerical investigation, the parameters that control the design method are calibrated to ensure the fulfillment of the Near Collapse performance objective stipulated in EC8. Finally, the capability of the proposed design method in fulfilling also performance objectives not explicitly considered in design is investigated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
133.
Controlled rocking steel braced frames (CRSBFs) are low‐damage self‐centring lateral force resisting systems. Previous studies have shown that designing the energy dissipation (ED) and post‐tensioning (PT) in CRSBFs using a response modification factor of R=8 can prevent collapse of structures during earthquakes beyond the design level. However, designers have unique control over the hysteretic behaviour of the system, even after the response modification factor is selected. Additionally, recent studies have suggested that CRSBFs could also be designed using R>8 while still satisfying performance limits. This paper examines how the response modification factor and the design of the ED and PT influence the collapse performance of CRSBFs with three and six storeys where collapse occurs because of over‐rotation of the base rocking joint. In addition, the influence of using an additional rocking joint above the base to mitigate higher‐mode forces is evaluated for a 12‐storey frame. A total of 18 different designs are considered for the three buildings using different ED and PT design parameters, including different response modification factors. A suite of 44 ground motions is scaled until at least 50% of the records cause collapse, and fragility curves are generated using the truncated incremental dynamic analysis curves. The results from two different assessment methodologies show that the parameters selected have a marked influence on the collapse performance of a CRSBF. Nevertheless, even CRSBFs designed using R>8 or without supplemental ED can have acceptably low probabilities of collapse, provided that the frame members are designed to remain elastic. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
134.
Cross concentrically braced frames (X-CBFs) are commonly used as primary seismic resisting system, owing to their large lateral stiffness, simplicity of design, and relatively low constructional cost. Current EN 1998-1 provides design rules theoretically aiming at developing ductile global plastic mechanism, namely enforcing plastic deformations in the diagonal members, while the remaining structural members and connections should elastically behave. However, as widely demonstrated by many existing studies, the design and the corresponding seismic performance of EC8-compliant X-CBFs are generally affected by several criticisms, eg, difficulties in sizing of diagonal members, massive and non-economical structures, and poor seismic behavior. In light of these considerations, the research activity presented in this paper is addressed to revise the design rules and requirements given EN 1998-1 for X-CBFs to simplify the design process and to improve the ductility and the dissipative capacity of this structural system. Hence, design rules are proposed for the next version of EN 1998-1 and numerically validated by means of nonlinear dynamic analyses.  相似文献   
135.
Numerous research studies have proved that numerical models aiming at an accurate evaluation of the seismic response of RC framed buildings cannot ignore the inelastic behaviour of infills and the interaction between infill and frame elements. To limit the high computational burden of refined non-linear finite element models, in the latest decades, many researchers have developed simplified infill models by means of single or multiple strut-elements. These models are low time-consuming and thus adequate for static and dynamic analyses of multi-storey structures. However, their simulation of the seismic response is sometimes unsatisfying, particularly in the presence of infill walls with regular or (particularly) irregular distributions of openings. This paper presents a new 2D plane macro-element, which provides a refined simulation of the non-linear cyclic response of infilled framed structures at the expense of a limited computational cost. The macro-element consists of an articulated quadrilateral panel, a single 1D diagonal link, and eight 2D links and is able to model the shear and flexural behaviour of the infill and the non-linear flexural/sliding interaction between infill and surrounding frame. The proposed macro-element has been implemented into the open source software OpenSees and used to simulate the response of single-storey, single-span RC infilled frame prototypes tested by other authors. The above prototypes are selected as made of different masonry units and characterised by full or open geometric configuration.  相似文献   
136.
Current seismic design requirements for special concentrically braced frames (SCBFs) in chevron configurations require that the beams supporting the braces be designed to resist the demands resulting from the simultaneous yielding of the tension brace and degraded, post-buckling strength of the compression brace. Recent research, including large-scale experiments and detailed finite-element analyses, has demonstrated that limited beam yielding is not detrimental to chevron braced frame behavior and actually increases the story drift at which the braces fracture. These findings have resulted in new expressions for computing beam demands in chevron SCBFs that reduce the demand in the tension brace to be equal to the expected compressive capacity at buckling of the compression brace. In turn, the resultant force on the beam is reduced as is the required size of the beam. Further study was undertaken to investigate the seismic performance of buildings with SCBFs, including chevron SCBFs with and without yielding beams and X-braced frames. Prototype three- and nine-story braced frames were designed using all three framing systems, that is, chevron, chevron with yielding beams, and X SCBFs, resulting in six building frames. The nonlinear dynamic response was studied for ground motions simulating two different seismic hazard levels. The results were used to characterize the seismic performance in terms of the probability of salient damage states including brace fracture, beam vertical deformation, and collapse. The results demonstrate that the seismic performance of chevron SCBFs with limited beam yielding performs as well as or better than the conventionally designed chevron and X SCBFs.  相似文献   
137.
一种无人机视频影像快速配准方法   总被引:2,自引:0,他引:2  
针对应急测绘中对无人机视频数据快速获取及处理的需求,提出了一种无人机视频影像快速配准方法。首先采用时间索引和线性/球面插值方法实现视频帧与无人机定位定姿信息的时间同步,根据数字微分纠正算法实现视频帧的地理编码,实现视频帧间的粗略配准,然后控制仿射变换模型中的缩放因子不变对纠正后视频帧的坐标进行调整,完成视频帧间的精配准:试验结果表明该方法能够得到航带内视频帧较好的配准效果。  相似文献   
138.
In this study, the torsional response of buildings with peripheral steel‐braced frame lateral systems is evaluated. A three‐dimensional model of a three story braced frame with various levels of eccentricity is created and the effects of torsion on the seismic response is assessed for four hazard levels. The response history analysis results indicate that, unlike frame structures, the torsional amplifications in the inelastic systems exceed those of corresponding elastic systems and tend to increase with an increase in the level of inelasticity. The ability of two simplified procedures, elastic response spectrum analysis and pushover analysis, to capture the torsional amplifications in steel‐braced frames is evaluated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
139.
Special concentrically braced frames (SCBFs) are commonly used as the lateral‐load resisting system in buildings. SCBFs primarily sustain large deformation demands through inelastic action in the brace, including compression buckling and tension yielding; secondary yielding may occur in the gusset plate and framing elements. The preferred failure mode is brace fracture. Yielding, buckling, and fracture behavior results in highly nonlinear behavior and accurate analytical modeling of these frames is required. Prior research has shown that continuum models are capable of this level of simulation. However, those models are not suitable for structural engineering practice. To enable the use of accurate yet practical nonlinear models, a research study was undertaken to investigate modeling parameters for line‐element models, which is a more practical modeling approach. This portion of the study focused on methods to predict brace fracture. A fracture modeling approach simulated the nonlinear, cyclic response of SCBFs by correlating onset of fracture to the maximum strain range in the brace. The model accounts for important brace design parameters including slenderness, compactness, and yield strength. Fracture data from over 40 tests was used to calibrate the model and included single‐brace component, single story frame, and full‐scale multistory frame specimens. The proposed fracture model is more accurate and simpler than other, previously proposed models. As a result, the proposed model is an ideal candidate for practical performance simulation of SCBFs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
140.
The paper illustrates a probabilistic methodology for assessing the vulnerability of existing reinforced concrete (RC) buildings with limited ductility capacity retrofitted by means of dissipative braces. The aim is to highlight the most important parameters controlling the capacity of these coupled systems and specific aspects concerning the response uncertainties. The proposed methodology is based on the use of local engineering demand parameters for monitoring the seismic response and on the development of component and system fragility curves before and after the retrofit. In the first part of the paper, the methodology is illustrated by highlighting its advantages with respect to the existing approaches. Then, its capability and effectiveness are tested by considering a benchmark two‐dimensional RC frame designed for gravity‐loads only. The frame is retrofitted by introducing elasto‐plastic dissipative braces designed for different levels of base shear capacity. The obtained results show the effectiveness of the methodology in describing the changes in the response and in the failure modalities before and after the retrofit, for different retrofit levels. Moreover, the retrofit effectiveness is evaluated by introducing proper synthetic parameters describing the fragility curves and by stressing the importance of employing local engineering demand parameters (EDPs) rather than global EDPs in the seismic risk evaluation of coupled systems consisting in low‐ductility RC frames and dissipative braces. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号