首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   768篇
  免费   143篇
  国内免费   380篇
测绘学   14篇
大气科学   365篇
地球物理   118篇
地质学   297篇
海洋学   394篇
天文学   5篇
综合类   45篇
自然地理   53篇
  2024年   7篇
  2023年   24篇
  2022年   36篇
  2021年   65篇
  2020年   52篇
  2019年   41篇
  2018年   54篇
  2017年   48篇
  2016年   47篇
  2015年   32篇
  2014年   52篇
  2013年   97篇
  2012年   54篇
  2011年   42篇
  2010年   52篇
  2009年   45篇
  2008年   72篇
  2007年   75篇
  2006年   73篇
  2005年   57篇
  2004年   38篇
  2003年   35篇
  2002年   28篇
  2001年   23篇
  2000年   28篇
  1999年   9篇
  1998年   14篇
  1997年   13篇
  1996年   7篇
  1995年   7篇
  1994年   13篇
  1993年   13篇
  1992年   8篇
  1991年   6篇
  1990年   6篇
  1989年   3篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1954年   2篇
排序方式: 共有1291条查询结果,搜索用时 19 毫秒
101.
利用NCEP OLR、风场再分析资料和日本APHRO_MA_V1003R1降水资料,针对云南主汛期季节内振荡(ISO)活跃年分析了对应低频对流场、环流场和降水的异常特征,以及热带印度洋大尺度振荡MJO分别激发孟加拉湾西南季风ISO和南海热带季风ISO,从而对云南主汛期ISO和降水产生的影响.在云南主汛期ISO活跃年,低频对流场和环流场在云南ISO波动的1~3位相和4~6位相呈反位相特征,这主要由热带印度洋低频对流东传、北传和副热带西太平洋低频对流西传造成的.热带印度洋的低频对流在发展过程中,一方面沿孟加拉湾西岸向西南-东北方向传播,激发了孟加拉湾西南季风ISO活跃并继续向云南传播;另一方面沿孟加拉湾以南继续东传到南海,激发了南海热带季风ISO活跃并北传到副热带中国东部地区,再沿副热带西传至云南,越过云南后与沿孟加拉湾西岸从东北方向传来的低频对流在孟加拉湾以北地区交汇,完成了一个经纬向接力传播的周期.云南主汛期降水在1~3位相由于副热带低频对流西传和孟加拉湾低频对流东北向传播而处于正距平(第2位相降水最多);在4~6位相,由于副热带低频对流抑制区西传和孟加拉湾低频对流抑制区东北向传播而降水减少(第5位相降水最少),云南主汛期降水与当地低频对流有较好的对应关系.当热带印度洋MJO较强时,4-7月以两条路径向云南的三次传播增强和提前,使得云南主汛期ISO活动也加强,对应产生三次低频对流活跃期,这种MJO由热带印度洋向云南的传播需要30~40天的时间.因此,正是热带印度洋MJO分别对孟加拉湾西南季风ISO和南海热带季风ISO的激发,使得东亚夏季风和南亚夏季风这两个亚洲夏季风系统共同作用于云南主汛期ISO,影响当地降水.  相似文献   
102.
赤道东印度洋海域是西半球暖池的重要组成部分,对我国季风系统乃至全球气候变化研究意义重大.印度洋作为海上丝绸之路的交通要道,开展东印度洋海洋调查也是保障海上丝绸之路安全的重要一环.自2010年起,国家自然科学基金委为贯彻落实《国家自然科学基金"十一五"发展规划》的战略部署而设立的"国家自然科学基金委印度洋综合航次",极大地促进了海洋学科多学科交叉和融合,丰富了该海域的海洋观测数据,取得了丰硕的科研成果.本文介绍了2010年起至今的东印度洋海洋学综合科学航次考察的内容、进展和成果,并展望了东印度洋海洋学综合科学考察航次今后的主要方向.  相似文献   
103.
Tectonic slices and lenses of eclogite within mafic and ultramafic rocks of the Early Cretaceous–Eocene Naga Hills ophiolite were studied to constrain the physical conditions of eastward subduction of the Indian plate under the Burma microplate and convergence rate prior to the India–Eurasia collision. Some of the lenses are composed of eclogite, garnet-blueschist, glaucophanite and greenschist from core to margin, representing a retrograde hydrothermal alteration sequence. Barroisite, garnet, omphacite and epidote with minor chlorite, phengite, rutile and quartz constitute the peak metamorphic assemblage. In eclogite and garnet-blueschist, garnet shows an increase in Mg and Fe and decrease in Mn from core to rim. In chlorite in eclogite, Mg increases from core to rim. Inclusions of epidote, glaucophane, omphacite and quartz in garnet represent the pre-peak assemblage. Glaucophane also occurs profusely at the rims of barroisite. The matrix glaucophane and epidote represent the post-peak assemblage. The Fe3+ content of garnet-hosted omphacite is higher than that of matrix omphacite, and Fe3+ increases from core to rim in matrix glaucophane. Albite occurs in late stage veins. P – T pseudosection analysis indicates that the Naga Hills eclogites followed a clockwise P – T path with prograde metamorphism beginning at ∼1.3 GPa/525 °C and peaking at 1.7–2.0 GPa/580–610 °C, and subsequent retrogression to ∼1.1 GPa/540 °C. A comparison of these P – T conditions with numerical thermal models of plate subduction indicates that the Naga Hills eclogites probably formed near the top of the subducting crust with convergence rates of ∼ 55–100 km Myr−1, consistent with high pre-collision convergence rates between India and Eurasia.  相似文献   
104.
Metal speciation study in combination with major element chemistry of deep sea sediments provided possible metal enrichment pathways in sediments collected from environmentally different locations of Central Indian Ocean Basin (CIB). Metal speciation study suggests that Fe–Mn oxyhydroxide phase was the major binding phase for Ni, Cu and Pb in the sediments. The second highest concentrations of all these metals were present within the structure of the sediments. Easily reducible oxide phase (within the Fe–Mn oxyhydroxide binding phases) was the major host for all the three metals in the studied sediments. Major element chemistry of these sediments revealed that there was an increased tendency of Cu and Ni to get incorporated into the deep sea sediment via the non-terrigenous Mn-oxyhydroxide fraction, whereas, Pb gets incorporated mostly via amorphous Fe-hydroxides into the sediment from the CIB. This is the first attempt to provide an insight into the mechanism of metal enrichment in sediment that host vast manganese nodule.  相似文献   
105.
东北印度洋地理位置独特,其沉积物记录了青藏高原隆升及孟加拉扇的“源-汇”过程、印度季风与东亚季风的“海-气”交互作用、印-太暖池热传输的演变与高纬气候之间的相位关系等关键信息,是喜马拉雅地区“构造-气候-沉积”耦合演化的良好记录载体,是探讨多圈层相互作用、探索古气候与古环境演化的理想“窗口”。本文系统总结了近年来有关东北印度洋季风与表层环流特征、沉积物组成及物源、气候环境演化以及环境磁学记录等方面的研究进展。分析表明,东北印度洋为典型的季风风场,表层环流受季风影响强烈,夏季和冬季环流差异明显。沉积物类型丰富,包括河流输运而来的陆源碎屑、钙质和硅质为主的生物沉积以及火山物质等。但目前对于该区域的沉积物的具体组成、“源-汇”过程、迁移历史、季风演化与青藏高原隆升、高纬气候变化之间相互关系等方面的认识尚存在较大的分歧。同时,受样品获取难度大、磁学信号稀释严重等因素的限制,环境磁学作为一种在示踪沉积物物质来源、恢复古气候和古环境等方面被普遍认可的技术手段,在东北印度洋区并没有得到充分的发挥与应用。因此,未来需要在前人研究的基础上,将目光向东北印度洋更南、更深处延伸,对其“源-汇”过程进行全面分析。在研究方法上进一步拓展,采用更高精度的技术手段提取磁学信号,加大环境磁学的应用,寻找有效的替代性指标,解决该地区季风演化、古海洋环境变化等气候环境问题,为该地区环境气候研究提供新认识。并尝试开展地磁场长期变化(paleosecular variation, PSV)研究,建立东北印度洋的PSV记录,辅助修正全球地磁场模型,探究地球深部动力过程。  相似文献   
106.
Three satellite-tracked drifting buoys released in the south equatorial current in the Indian Ocean followed the path of the current moving westward approximately zonally in the vicinity of 10 S latitude. On nearing the east coast of Africa two buoys moved north and the third moved south. Over the open sea regime the buoys moved with a speed of approximately 30 cm/s at an angle of about 35° to the left of the wind. The overall tendencies seen in the buoy drift are similar to those observed elsewhere in the world oceans.  相似文献   
107.
Due to the IO monsoon impact, the tropical IO circulation has significant seasonal variation, especially in the northern IO. However, in mean-state, a relatively closed current loop is established by eastward current along the equator and westward current south of equator, which is regarded as Tropical Gyre in the Indian Ocean. Based on this circulation system, relevant studies were reviewed. Its impact on heat and salt transports and regional climate changes were discussed.  相似文献   
108.
We use daily satellite estimates of sea surface temperature (SST) and rainfall during 1998–2005 to show that onset of convection over the central Bay of Bengal (88–92°E, 14–18°N) during the core summer monsoon (mid-May to September) is linked to the meridional gradient of SST in the bay. The SST gradient was computed between two boxes in the northern (88–92°E, 18–22°N) and southern (82–88°E, 4–8°N) bay; the latter is the area of the cold tongue in the bay linked to the Summer Monsoon Current. Convection over central bay followed the SST difference between the northern and southern bay (ΔT) exceeding 0.75°C in 28 cases. There was no instance of ΔT exceeding this threshold without a burst in convection. There were, however, five instances of convection occurring without this SST gradient. Long rainfall events (events lasting more than a week) were associated with an SST event (ΔT ≥ 0.75°C); rainfall events tended to be short when not associated with an SST event. The SST gradient was important for the onset of convection, but not for its persistence: convection often persisted for several days even after the SST gradient weakened. The lag between ΔT exceeding 0.75°C and the onset of convection was 0–18 days, but the lag histogram peaked at one week. In 75% of the 28 cases, convection occurred within a week of ΔT exceeding the threshold of 0.75°C. The northern bay SST, T N , contributed more to ΔT, but it was a weaker criterion for convection than the SST gradient. A sensitivity analysis showed that the corresponding threshold for T N was 29°C. We hypothesise that the excess heating (∼1°C above the threshold for deep convection) required in the northern bay to trigger convection is because this excess in SST is what is required to establish the critical SST gradient.  相似文献   
109.
The dynamics and thermodynamics of the surface layer of the Arabian Sea, north of about 10N, are dominated by the monsoon-related annual cycle of air-sea fluxes of momentum and heat. The currents in open-sea regime of this layer can be largely accounted for by Ekman drift and the thermal field is dominated by local heat fluxes. The geostrophic currents in open-sea subsurface regime also show a seasonal cycle and there is some evidence that signatures of this cycle appear as deep as 1000 m. The forcing due to Ekman suction is an important mechanism for the geostrophic currents in the central and western parts of the Sea. Recent studies suggest that the eastern part is strongly influenced by the Rossby waves radiated by the Kelvin waves propagating along the west coast of India. The circulation in the coastal region off Oman is driven mainly by local winds and there is no remotely driven western boundary current. Local wind-driving is also important to the coastal circulation off western India during the southwest monsoon but not during the northeast monsoon when a strong (approximately 7 × 106m3/sec) current moves poleward against weak winds. This current is driven by a pressure gradient which forms along this coast during the northeast monsoon due to either thermohaline-forcing or due to the arrival of Kelvin waves from the Bay of Bengal. The present speculation about flow of bottom water (deeper than about 3500 m) in the Arabian Sea is that it moves northward and upwells into the layer of North Indian Deep Water (approximately 1500–3500m). It is further speculated that the flow in this layer consists of a poleward western boundary current and a weak equatorward flow in the interior. It is not known if there is an annual cycle associated with the deep and the bottom water circulation.  相似文献   
110.
Although a 1972 dredging by USNS Eltanin from the submarine Naturaliste Plateau was reported to yield rocks of continental origin, a re‐examination of the dredge haul shows that the rock clasts are in fact altered tholeiitic basalts. They have affinities both with MOR basalts and, especially, within‐plate basalts. Petrographically they correlate most closely with the Bunbury Tholeiitic Suite on the Australian mainland to the east. The basalts are reworked cobbles in a manganiferous Quaternary slump mass, which contains a quartz‐rich, felsic, detrital mineral suite with a granite‐gneiss provenance. The basalt cobbles were part of a basal conglomerate, which covered large areas of the Plateau. It is suggested that this was laid down from nearby elevated volcanic structures formed during the inception of seafloor spreading and the separation of Greater India from Australia at about 122 Ma BP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号