首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   4篇
  国内免费   58篇
测绘学   3篇
大气科学   32篇
地球物理   28篇
地质学   8篇
海洋学   125篇
综合类   8篇
自然地理   1篇
  2024年   1篇
  2023年   4篇
  2022年   3篇
  2021年   2篇
  2020年   10篇
  2019年   4篇
  2018年   8篇
  2017年   10篇
  2016年   6篇
  2015年   2篇
  2014年   13篇
  2013年   21篇
  2012年   4篇
  2011年   6篇
  2010年   1篇
  2009年   12篇
  2008年   24篇
  2007年   10篇
  2006年   9篇
  2005年   13篇
  2004年   5篇
  2003年   7篇
  2002年   6篇
  2001年   2篇
  2000年   4篇
  1999年   7篇
  1998年   2篇
  1997年   3篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1980年   1篇
排序方式: 共有205条查询结果,搜索用时 15 毫秒
81.
Observations of Eddies in the Japan Basin Interior   总被引:1,自引:0,他引:1  
Eddy features in the Japan Basin have been studied by combining satellite-derived sea surface temperature (SST) images and WOCE drifter tracks with recent current meter data from a deep mooring in the interior of the Basin. SST images indicate that anticyclonic eddies often appear around the Subpolar Front in cold seasons and move into the northern cold water region entraining warm water of the frontal zone. The anti-cyclonic eddies "visualized" by the entrained warm water and trajectories of some drifters are typically 30 km in radius and have rotational speeds of 0.15 to 0.3 m/s at the surface. On the other hand, the current meter data of 3-year duration show that vertically coherent eddy-like currents of the order of 0.1 m/s occur every year in cold seasons in the deep (1000 to 3000 m) layer of the Japan Basin interior. An important finding is that available time series of SST patterns are well correlated to the vertically coherent deep currents. This correlation suggests that the anticyclonic eddies indicated by both SST images and drifter tracks are actually barotropic or quasi-barotropic, extending from the surface to the bottom. It is argued that the unique current features in the deep layer of the Japan Basin can be explained in terms of barotropic eddies. A brief discussion is also made of the possible source of the eddy kinetic energy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
82.
The neon flying squid Ommastrephes bartramii is an economically important species in the Northwest Pacific Ocean. The life cycle of O. bartramii is highly susceptible to climatic and oceanic factors. In this study, we have examined the impacts of climate variability and local biophysical environments on the interannual variability of the abundance of the western winter-spring cohort of O. bartramii over the period of 1995–2011. The results showed that the squid had experienced alternant positive and negative Pacific Decadal Oscillation(PDO) over the past 17 years during which five El Ni?o and eight La Ni?a events occurred. The catch per unit effort(CPUE) was positively correlated with the PDO index(PDOI) at a one-year time lag. An abnormally warm temperature during the La Ni?a years over the positive PDO phase provided favorable oceanographic conditions for the habitats of O.bartramii, whereas a lower temperature on the fishing ground during the El Ni?o years over the negative PDO phase generally corresponded to a low CPUE. The same correlation was also found between CPUE and Chl a concentration anomaly. A possible explanation was proposed that the CPUE was likely related to the climateinduced variability of the large-scale circulation in the Northwest Pacific Ocean: high squid abundance often occurred in a year with a significant northward meander of the Kuroshio Current. The Kuroshio Current advected the warmer and food-rich waters into the fishing ground, and multiple meso-scale eddies arising from current instability enhanced the food retention on the fishing ground, all of which were favorable for the life stage development of the western squid stocks. Our results help better understand the potential process that the climatic and oceanographic factors affect the abundance of the winter-spring cohort of O. bartramii in the Northwest Pacific Ocean.  相似文献   
83.
E-Flux III (March 10–28, 2005) was the third and last field experiment of the E-Flux project. The main goal of the project was to investigate the physical, biological and chemical characteristics of mesoscale eddies that form in the lee of Maui and the Island of Hawai’i, focusing on the physical–biogeochemical interactions. The primary focus of E-Flux III was the cyclonic cold-core eddy Opal, which first appeared in the NOAA GOES sea-surface temperature (SST) imagery during the second half of February 2005. During the experiment, Cyclone Opal moved over 160 km, generally southward. Thus, the sampling design had to be constantly adjusted in order to obtain quasi-synoptic observations of the eddy. Analyses of ship transect-depth profiles of CTD, optical and acoustic Doppler current profiler (ADCP) data revealed a well-developed feature characterized by a fairly symmetric circular shape with a radius of about 80 km. Depth profiles of temperature, salinity and density were characterized by an intense doming of isothermal, isohaline and isopycnal surfaces. Isopleths of nutrient concentrations were roughly parallel to isopycnals, indicating the upwelling of deep nutrient-rich water. The deep chlorophyll maximum layer (DCML) shoaled from a depth of about 130 m in the outer regions of the eddy to about 60 m in the center. Chlorophyll concentrations reached their maximum values in Opal's core region (about 40 km in diameter), where nutrients were upwelled into the euphotic layer. ADCP velocity data clearly showed the cyclonic circulation associated with Opal. Vertical sections of tangential velocities were characterized by values that increased linearly with radial distance from near zero close to the center to a maximum of about at roughly 25 km from the center, and then slowly decayed. The vertical extent of the cyclonic circulation was primarily limited to the upper mixed layer, as tangential velocities decayed quite rapidly within a depth range of 90–130 m. Potential vorticity analysis suggests that only a relatively small (about 50 km in diameter) and shallow (to a depth of approximately 70 m) portion of the eddy is isolated from the surrounding waters. Radial movements of water can occur between the center of the eddy and the outer regions along density surfaces within an isopycnal range of σt23.6 () and σt24.4 (). Thus the biogeochemistry of the system might have been greatly influenced by these lateral exchanges of water at depth, especially during Opal's southward migration. While the eddy was translating, deep water in front of the eddy might have been upwelled into the core region, leading to an additional injection of nutrients into the euphotic zone. At the same time, part of the chlorophyll-rich waters in the core region might have remained behind the translating eddy and, thus contributed to the formation of an eddy wake characterized by relatively high chlorophyll concentrations.  相似文献   
84.
Wind-driven cyclonic eddies are hypothesized to relieve nutrient stress and enhance primary production by the upward displacement of nutrient-rich deep waters into the euphotic zone. In this study, we measured nitrate (NO3), particulate carbon (PC), particulate nitrogen (PN), their stable isotope compositions (δ15N-NO3, δ13C-PC and δ15N-PN, respectively), and dissolved organic nitrogen (DON) within Cyclone Opal, a mature wind-driven eddy generated in the lee of the Hawaiian Islands. Sampling occurred in March 2005 as part of the multi-disciplinary E-Flux study, approximately 4–6 weeks after eddy formation. Integrated NO3 concentrations above 110 m were 4.8 times greater inside the eddy (85.8±6.4 mmol N m−2) compared to the surrounding water column (17.8±7.8 mmol N m−2). Using N-isotope derived estimates of NO3 assimilation, we estimated that 213±59 mmol m−2 of NO3 was initially injected into the upper 110 m Cyclone Opal formation, implying that NO3 was assimilated at a rate of 3.75±0.5 mmol N m−2 d−1. This injected NO3 supported 68±19% and 66±9% of the phytoplankton N demand and export production, respectively. N isotope data suggest that 32±6% of the initial NO3 remained unassimilated. Self-shading, inefficiency in the transfer of N from dissolved to particulate export, or depletion of a specific nutrient other than N may have led to a lack of complete NO3 assimilation. Using a salt budget approach, we estimate that dissolved organic nitrogen (DON) concentrations increased from eddy formation (3.8±0.4 mmol N m−2) to the time of sampling (4.0±0.09 mmol N m−2), implying that DON accumulated at rate of 0.83±1.3 mmol N m−2 d−1, and accounted for 22±15% of the injected NO3. Interestingly, no significant increase in suspended PN and PC, or export production was observed inside Cyclone Opal relative to the surrounding water column. A simple N budget shows that if 22±15% of the injected NO3 was shunted into the DON pool, and 32±6% is unassimilated, then 46±16% of the injected NO3 remains undocumented. Alternative loss processes within the eddy include lateral exchange of injected NO3 along isopycnal surfaces, remineralization of PN at depth, as well as microzooplankton grazing. A 9-day time series within Cyclone Opal revealed a temporal depletion in δ15N-PN, implying a rapid change in the N source. A change in NO3 assimilation, or a shift from NO3 fueled growth to assimilation of a 15N-deplete N source, may be responsible for such observations.  相似文献   
85.
Mesoscale eddies play vital roles in ocean processes. Although previous studies focused on eddy surface features and individual three-dimensional (3D) eddy cases in the northwestern Pacific Ocean, the analysis of unique eddy 3D regional characteristics is still lacking. A 3D eddy detection scheme is applied to 9 years (2000–2008) of eddy-resolving Regional Ocean Modeling System (ROMS) output to obtain a 3D eddy dataset from the surface to a depth of 1 000 m in the northwestern Pacific Ocean (15°–35°N, 120°–145°E). The 3D characteristics of mesoscale eddies are analyzed in two regions, namely, Box1 (Subtropical Countercurrent, 15°–25°N, 120°–145°E) and Box2 (Southern Kuroshio Extension, 25°–35°N, 120°–145°E). In Box1, the current is characterized by strong vertical shear and weak horizontal shear. In Box2, the current is characterized by the strong Kuroshio, topographic effect, and the westward propagation of Rossby waves. The results indicate the importance of baroclinic instability in Box1, whereas in Box2, both the barotropic and baroclinic instability are important. Moreover, the mesoscale eddies’ properties in Box1 and Box2 are distinct. The eddies in Box1 have larger number and radius but a shorter lifetime. By contrast, Box2 has fewer eddies, which have smaller radius but longer lifetime. Vertically, more eddies are detected at the subsurface than at the surface in both regions; the depth of 650 m is the turning point in Box1. Above this depth, the number of cyclonic eddies (CEs) is larger than that of anticyclonic eddies (AEs). In Box2, the number of CEs is dominant vertically. Eddy kinetic energy (EKE) and mean normalized relative vorticity in Box2 are significantly higher than those in Box1. With increasing depth, the attenuation trend of EKE and relative vorticity of Box1 become greater than those of Box2. Furthermore, the upper ocean (about 300 m in depth) contains 68.6% of the eddies (instantaneous eddy). Only 16.6% of the eddies extend to 1 000 m. In addition, about 87% of the eddies are bowl-shaped eddies in the two regions. Only about 3% are cone-shaped eddies. With increasing depth of the eddies, the proportion of bowl-shaped eddies gradually decreases. Conversely, the cone- and lens-shaped eddies are equal in number at 700–1 000 m, accounting for about 30% each. Studying the 3D characteristics of eddies in two different regions of the northwestern Pacific Ocean is an important stepping stone for discussing the different eddy generation mechanisms.  相似文献   
86.
两个西边界流延伸体区域中尺度涡统计特征分析   总被引:1,自引:2,他引:1  
黑潮和湾流是世界大洋中最典型的两支西边界流,黑潮延伸体(Kuroshio Extention,KE)和湾流延伸体(Gulf Stream Extention,GSE)区域中尺度涡活动十分活跃。本文综合利用卫星高度计资料和Argo浮标资料,对KE和GSE区域中尺度涡的表层特征及其对温盐影响进行了统计研究和对比分析。结果表明:黑潮和湾流主轴附近为涡旋频率的高值区,主轴南北两侧分别以气旋涡和反气旋涡数量占多,主轴附近的涡旋强度明显大于其他区域;两个区域的涡旋以西向移动为主,气旋涡和反气旋涡都具有向南(赤道)偏离的趋势;两个区域的涡旋数量都以夏、秋季较多,涡旋强度都在春、夏季较大,且GSE区域涡旋强度明显大于KE区域;气旋涡(反气旋涡)引起内部明显的温度负(正)异常,KE区域气旋涡(反气旋涡)内部呈"负-正"("正-负")上下层相反的盐度异常分布,GSE区域气旋涡(反气旋涡)在各层呈现较为一致的盐度负(正)异常;两个区域中尺度涡对温盐场的平均影响深度可达1 000×104 Pa以上。  相似文献   
87.
Data from satellite altimeters and from a 13-month deployment of in situ instruments are used to determine an empirical relationship between sea-level anomaly difference (SLA) across the Kuroshio in the East China Sea (ECS-Kuroshio) and net transport near 28°N. Applying this relationship to the altimeter data, we obtain a 12-year time series of ECS-Kuroshio transport crossing the C-line (KT). The resulting mean transport is 18.7 ± 0.2 Sv with 1.8 Sv standard deviation. This KT is compared with a similarly-determined time series of net Ryukyu Current transport crossing the O-line near 26°N southeast of Okinawa (RT). Their mean sum (24 Sv) is less than the mean predicted Sverdrup transport. These KT and RT mean-flow estimates form a consistent pattern with historical estimates of other mean flows in the East China Sea/Philippine Basin region. While mean KT is larger than mean RT by a factor of 3.5, the amplitude of the KT annual cycle is only half that of RT. At the 95% confidence level the transports are coherent at periods of about 2 years and 100–200 days, with RT leading KT by about 60 days in each case. At the annual period, the transports are coherent at the 90% confidence level with KT leading RT by 4–5 months. While the bulk of the Kuroshio enters the ECS through the channel between Taiwan and Yonaguni-jima, analysis of satellite altimetry maps, together with the transport time series, indicates that the effect of mesoscale eddies is transmitted to the ECS via the Kerama Gap southwest of Okinawa. Once the effect of these eddies is felt by the ECS-Kuroshio at 28°N, it is advected rapidly to the Tokara Strait.  相似文献   
88.
In this study, the short-term offshore extension of Brahmaputra-Ganges(BG) and Irrawaddy freshwater plumes to the central northern Bay of Bengal(BoB) was investigated based on in situ and satellite observations. In the summer and winter of 2015, two significant freshening events with periods of weeks were observed from a moored buoy at 15°N, 90°E in the BoB. Soil Moisture Active Passive(SMAP) satellite sea surface salinity compares well with the in situ data and shows that these freshening events are directly related to the short-term offshore extension of the BG and Irrawaddy freshwater, respectively. These data combined with the altimeter sea level anomaly data show that the offshore extending plumes result from freshwater modulated by eddies. During summer, the BG freshwater is modulated by a combination of three closely located eddies: a large anticyclonic eddy(ACE) off the northwestern BoB coast and two cyclonic eddies in the northern BoB. Consequently, the freshwater extends offshore from the river mouth and forms a long and narrow tongue-shaped plume extending southwestward to the central BoB. During winter, the Irrawaddy freshwater is modulated by two continuous ACEs evolved from Rossby wave propagating westward from the Irrawaddy Delta off Myanmar, forming a tongueshaped plume extending to the central BoB. Strong salinity fronts are formed along the boundaries of these tongue-shaped plumes. These findings confirm good capability of the SMAP data to investigate the short-term offshore extension of the BG and Irrawaddy freshwater. This study provides direct evidences of the pathways of the offshore extension of the BG and Irrawaddy freshwater and highlights the role of eddies in the northern BoB freshwater plume variability.  相似文献   
89.
Ship-based acoustic Doppler current profiler (S-ADCP) technology, used in survey mode, has enabled near- synoptic views of the in situ 3-D current field in the KwaZulu-Natal (KZN) Bight to be elucidated for the first time. Data acquired by the research vessels RS Africana and RS Algoa in June 2005, September 2007, March 2009 and July 2010 are presented. Each S-ADCP dataset showed similar circulation characteristics whereby the continental slope and outer shelf of the KZN Bight were strongly influenced by the south-westward flowing Agulhas Current. This was particularly evident in the extreme north between Cape St Lucia and Richards Bay where the shelf is narrowest and velocities exceeded 200 cm s?1. The widening of the bight to the south moves the Agulhas Current further from the coast, resulting in a diminishing velocity gradient on the outer shelf which terminates around the midshelf axis. The southern region of the bight was mostly influenced by the Durban cyclonic eddy (Durban Eddy), and in June 2005 and September 2007, by a cyclonic ‘swirl’ that occupied the entire southern half of the KZN Bight, the latter identified by a combination of S-ADCP-, satellite-derived SST- and ocean colour data. Satellite data showed low-chlorophyll offshore water to move into this swirl and northwards along the inner- and midshelf, reaching the Thukela River. Inner-shelf circulation north of the Thukela River was weak (<20 cm s?1) and highly variable. Satellite-tracked surface drogues deployed in the Durban Eddy found their way into the northward coastal current in the KZN Bight, with velocities exceeding 90 cm s?1 at times. The drogues also highlighted the strong influence of wind, especially in the northern bight between Durnford Point and Cape St Lucia, with residence times on the shelf exceeding 14 days, suggesting this region to be of biological importance particularly for recruitment.  相似文献   
90.
A review is presented of the ocean circulation along Australia’s southern shelves and slope. Uniquely, the long, zonal shelf is subject to an equatorward Sverdrup transport that gives rise to the Flinders Current - a small sister to the world’s major Western Boundary Currents. The Flinders Current is strongest near the 600 m isobath where the current speeds can reach 20 cm/s and the bottom boundary layer is upwelling favourable. It is larger in the west but likely intermittent in both space and time due to possibly opposing winds, thermohaline circulation and mesoscale eddies. The Flinders Current may be important to deep upwelling within the ubiquitous canyons of the region.During winter, the Leeuwin Current and local winds act to drive eastward currents that average up to 20-30 cm/s. The currents associated with the intense coastal-trapped wave-field (6-12 day band) are of order 25-30 cm/s and can peak at 80-90 cm/s. Wintertime winds and cooling also lead to downwelling to depths of 200 m or more and the formation of dense coastal water within the Great Australian Bight and the South Australian Sea. Within the Great Australian Bight, the thermohaline circulation associated with this dense water is unknown, but may enhance the eastward shelf-edge, South Australian Current. The dense salty water formed within Spencer Gulf is known to cascade as a gravity current to depths of 200 m off Kangaroo Island. This dense water outflow and meanders in the shelf circulation also fix the locations of a sequence of quasi-permanent mesoscale eddies between the Eyre Peninsula and Portland.During summer, the average coastal winds reverse and surface heating leads to the formation of warm water in the western Great Australian Bight and the South Australian Sea. No significant exchange of shelf water and gulf water appears to occur due to the presence of a dense, nutrient-rich (sub-surface) pool that is upwelled off Kangaroo Island. The winds lead to weak average coastal currents (<10 cm/s) that flow to the north-west. In the Great Australian Bight, the wind stress curl can lead to an anticyclonic circulation gyre that can result in shelf-break downwelling in the western Great Australian Bight and the formation of the eastward, South Australian Current. In the east, upwelling favourable winds and coastal-trapped waves can lead to deep upwelling events off Kangaroo Island and the Bonney Coast that occur over 3-10 days and some 2-4 times a season. The alongshore currents here can be large (∼40 cm/s) and the vertical scales of upwelling are of order 150 m (off Kangaroo Island) and 250 m (off the Bonney Coast).Increasing evidence suggests that El Nino events (4-7 year period) can have a major impact on the winter and summer circulation. These events propagate from the Pacific Ocean and around the shelf-slope wave-guide of West Australia and into the Great Australian Bight. During winter El Nino events, the average shelf currents may be largely shut-down. During summer, the thermocline may be raised by up to 150 m. The nature and role of tides and surface waves is also discussed along with uncertainties in the general circulation and future research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号