首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   34篇
  国内免费   80篇
大气科学   19篇
地球物理   64篇
地质学   231篇
海洋学   19篇
天文学   25篇
综合类   12篇
自然地理   14篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   8篇
  2018年   6篇
  2017年   12篇
  2016年   13篇
  2015年   12篇
  2014年   9篇
  2013年   13篇
  2012年   12篇
  2011年   15篇
  2010年   8篇
  2009年   17篇
  2008年   22篇
  2007年   28篇
  2006年   27篇
  2005年   18篇
  2004年   15篇
  2003年   9篇
  2002年   13篇
  2001年   16篇
  2000年   11篇
  1999年   12篇
  1998年   10篇
  1997年   10篇
  1996年   8篇
  1995年   8篇
  1994年   11篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1978年   1篇
排序方式: 共有384条查询结果,搜索用时 31 毫秒
91.
碾子沟钼矿床是内蒙古西拉沐伦钼多金属成矿带中石英脉型钼矿床的典型代表,矿体以石英大脉形式产于燕山期中粗粒黑云母二长花岗岩内,受断裂构造控制。流体包裹体研究发现包裹体均为气液两相,按照相比不同,可进一步分为WL型(5%~20%)和WV型(20%~50%)。Ⅰ阶段流体为低温(89.3~245.2℃)、中低盐度(2.07%~17.96%NaCleqv)流体;Ⅱ阶段流体具有中低温(134.4~458.8℃,峰值170℃~240℃)、中低盐度(0.53%~19.92%NaCleqv)特征;Ⅲ阶段流体为低温(134.9~202.4℃)、中低盐度(4.96%~14.97%NaCleqv)流体。流体成分均以H2O为主(96.1mol%),含少量挥发份CO2、N2、CH4、C2H6、Ar、H2S,阳离子以Na+为主,阴离子以SO42-、Cl-为主,属NaCl-H2O体系。各阶段成矿热液氢、氧同位素特征为:δ18OH2O介于-5.75‰~-1.90‰、δD介于-128.821‰~-109.234‰,说明成矿流体是岩浆热液与古大气降水混合而成。开放的断裂体系为流体混合创造了条件,流体的混合作用是造成碾子沟辉钼矿沉淀成矿的主要原因。这与斑岩型钼矿床的高盐度流体以及以沸腾为主的矿石沉淀机制具有显著区别。  相似文献   
92.
安徽铜陵马山金铜硫矿床产于中石炭统黄龙组白云岩与灰岩地层之间,主矿体呈层状。矿石结构构造、成矿元素地层学分带、硫化物矿物微量元素地球化学和硫、铅同位素等特征表明,该矿床是中石炭世海底喷流沉积的块状硫化物矿床,成矿后在燕山期又受到了石英闪长岩体的改造和叠加。在长江中、下游断裂拗陷带中有许多硫化物矿床在成因上与马山相似。研究表明,在晚古生代,有一片洋壳拖着扬子板块往北向华北板块俯冲,故这类矿床形成于扬子古陆北缘的被动大陆边缘环境。  相似文献   
93.
Hydrogen peroxide (H2O2) and organic hydroperoxides (ROOH) were measured on board of theRV Polarstern during its cruise across the Atlantic Ocean from 20 October to 12 November 1990 (54° N to 51° S latitude) by the enzyme fluorometric method. The H2O2 mixing ratio varied from below the detection limit of about 0.12 ppbv up to 3.89 ppbv, showing a latitudinal dependence with generally higher values around the equator and decreasing values poleward. The shape of the latitudinal H2O2 distribution agrees well with an analytical steady state expression for H2O2 using the measured H2O and O3 distribution and a wind dependent H2O2 deposition rate. The ROOH mixing ratio varied from below the detection limit of about 0.08 ppbv up to 1.25 ppbv with qualitatively the same latitudinal dependence as H2O2. The observed ratio ROOH/(ROOH + H2O2) varied between 0.17 and 0.98 showing higher values at the lowest H2O2 mixing ratios at high latitudes. The measured H2O2 mixing ratio shows a significant diurnal variation with a maximum around 14:00 local time, explicable by a superposition of the photochemical H2O2 production with a constant H2O2 deposition rate. Four independent estimations of the average effective H2O2 deposition rate inferred from the H2O2 decrease in the night, from the midday H2O2 production deficit (as derived from comparison with a photochemical model and from the daily ozone loss), and from the offset in the latitudinal H2O2 distribution, were consistent. An episode of maximum H2O2 concentration suggests the possibility of its formation in clouds.  相似文献   
94.
To understand the fundamental chemical processes of fluid–rock interaction during the pulverization of quartz grains in fault zones, quartz grains were crushed within pure water. The crushing experiments were performed batch style using a shaking apparatus. The crushing process induced a decrease in pH and an increase in hydrogen gas with increased shaking duration. The amount of hydrogen ions generated was five times larger than that of the hydrogen gas, which was consistent with the amount of Si radicals estimated from electron spin resonance measurements by Hochstrasser and Antonini (1972). This indicates that hydrogen gas was generated by consuming most of the Si radicals. The generation of hydrogen ions was most likely related to the presence of silanols on the newly formed mineral surface, implying a change of proton activities in the fluid after pulverization of quartz.  相似文献   
95.
The space group and hydrogen positions of -(Al0.84Mg0.07Si0.09)OOH are investigated using a single crystal synthesized using a multi-anvil apparatus under conditions of 1000 °C and 21 GPa. The space group determined by single-crystal X-ray diffraction is to Pnn2, with unit-cell parameters of a=4.6975(8) Å, b= 4.2060(6) Å, c=2.8327(4) Å, and V=55.97(1) Å3. Partial occupancy of the Al site by Mg and Si suggests the possibility of a limited solid solution between -AlOOH, stishovite, and a hypothetical CaCl2-type Mg(OH)2 that is 16% denser than brucite. Difference-Fourier maps reveal two small but significant Fourier peaks attributable to hydrogen atoms. Atomic distances and angles around the first peak indicate a hydrogen bond with O···O distances of 2.511 Å, while those around the second peak are suggestive of a bifurcated hydrogen bond with O···O distances of 2.743 and 2.743 Å.  相似文献   
96.
97.
Classical atomistic simulation techniques have been used to investigate the energies of hydrogen defects in Mg2SiO4 and Mg2GeO4 spinels. Ringwoodite (γ-Mg2SiO4) is considered to be the most abundant mineral in the lower part of the transition zone and can incorporate large amounts of water in the form of hydroxyls, whereas the germanate spinel (γ-Mg2GeO4) corresponds to a low-pressure structural analogue for ringwoodite. The calculated defect energies indicate that the most favourable mechanisms for hydrogen incorporation are coupled either with the reduction of ferric iron or with the creation of tetrahedral vacancies. Hydrogen will go preferentially into tetrahedral vacancies, eventually leading to the formation of the hydrogarnet defect, before associating with other negatively charged point defects. The presence of isolated hydroxyls is not expected. The same trend is observed for germanate, and thus γ-Mg2GeO4 could be used as a low-pressure analogue for ringwoodite in studies of water-related defects and their effect on physical properties.  相似文献   
98.
Hydrogen from coal: Production and utilisation technologies   总被引:2,自引:0,他引:2  
Although coal may be viewed as a dirty fuel due to its high greenhouse emissions when combusted, a strong case can be made for coal to be a major world source of clean H2 energy. Apart from the fact that resources of coal will outlast oil and natural gas by centuries, there is a shift towards developing environmentally benign coal technologies, which can lead to high energy conversion efficiencies and low air pollution emissions as compared to conventional coal fired power generation plant. There are currently several world research and industrial development projects in the areas of Integrated Gasification Combined Cycles (IGCC) and Integrated Gasification Fuel Cell (IGFC) systems. In such systems, there is a need to integrate complex unit operations including gasifiers, gas separation and cleaning units, water gas shift reactors, turbines, heat exchangers, steam generators and fuel cells. IGFC systems tested in the USA, Europe and Japan employing gasifiers (Texaco, Lurgi and Eagle) and fuel cells have resulted in energy conversions at efficiency of 47.5% (HHV) which is much higher than the 30–35% efficiency of conventional coal fired power generation. Solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are the front runners in energy production from coal gases. These fuel cells can operate at high temperatures and are robust to gas poisoning impurities. IGCC and IGFC technologies are expensive and currently economically uncompetitive as compared to established and mature power generation technology. However, further efficiency and technology improvements coupled with world pressures on limitation of greenhouse gases and other gaseous pollutants could make IGCC/IGFC technically and economically viable for hydrogen production and utilisation in clean and environmentally benign energy systems.  相似文献   
99.
Atomistic computer simulation techniques have been employed to model mechanisms of hydrogen incorporation in the clinopyroxenes diopside and jadeite. Calculation of solution reaction energies for the pure phases indicates that hydrogen is most easily incorporated via the formation of [VSi(OH)4] x hydrogarnet type defects. When components of the two phases are mixed, then solution energies can become exothermic. The substitution of Al for Si in diopside and of Mg or Ca for Al in jadeite, provides favourable routes for hydrogen incorporation, with exothermic values of solution energy. Thus the amount of water present in these minerals in the Earth’s upper mantle will vary with composition. Simulation of IR frequencies associated with O–H stretching at specific defect clusters has also been carried out. An analysis of hydrogen–oxygen bond lengths gives good agreement, although comparison of experimental and calculated IR frequencies are problematic. This is partly due to the complexity of experimental spectra, but may also be due in part to deficiencies in the ability of the model to accurately describe the O–H stretching frequency.  相似文献   
100.
The metallogenic characteristics of the Wushan deposit are discussed based on its regional geology, mine geology, mineralization temperature and stable isotopic compositions. The deposit is closely related to granodiorite both spatially and genetically, thus belonging to intrusive massive sulphidr deposits, which art. different in metallogenic features from that of the volcanogenic massive sulphidr deposits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号