A 2DH numerical, model which is capable of computing nearshore circulation and morphodynamics, including dune erosion, breaching and overwash, is used to simulate overwash caused by Hurricane Ivan (2004) on a barrier island. The model is forced using parametric wave and surge time series based on field data and large-scale numerical model results. The model predicted beach face and dune erosion reasonably well as well as the development of washover fans. Furthermore, the model demonstrated considerable quantitative skill (upwards of 66% of variance explained, maximum bias − 0.21 m) in hindcasting the post-storm shape and elevation of the subaerial barrier island when a sheet flow sediment transport limiter was applied. The prediction skill ranged between 0.66 and 0.77 in a series of sensitivity tests in which several hydraulic forcing parameters were varied. The sensitivity studies showed that the variations in the incident wave height and wave period affected the entire simulated island morphology while variations in the surge level gradient between the ocean and back barrier bay affected the amount of deposition on the back barrier and in the back barrier bay. The model sensitivity to the sheet flow sediment transport limiter, which served as a proxy for unknown factors controlling the resistance to erosion, was significantly greater than the sensitivity to the hydraulic forcing parameters. If no limiter was applied the simulated morphological response of the barrier island was an order of magnitude greater than the measured morphological response. 相似文献
A set of numerical experiments has been performed in order to analyze the long-wave response of the coastal ocean to a translating mesoscale atmospheric cyclone approaching the coastline at a normal angle. An idealized two-slope shelf topography is chosen. The model is forced by a radially symmetric atmospheric pressure perturbation with a corresponding gradient wind field. The cyclone's translation speed, radius, and the continental shelf width are considered as parameters whose impact on the long wave period, modal structure, and amplitude is studied. Subinertial continental shelf waves (CSW) dominate the response under typical forcing conditions and on the narrower shelves. They propagate in the downstream (in the sense of Kelvin wave propagation) direction. Superinertial edge wave modes have higher free surface amplitudes and faster phase speeds than the CSW modes. While potentially more dangerous, edge waves are not as common as subinertial shelf waves because their generation requires a wide, gently sloping shelf and a storm system translating at a relatively high (∼10 m s−1 or faster) speed. A relatively smaller size of an atmospheric cyclone also favors edge wave generation. Edge waves with the highest amplitude (up to 60% of the forced storm surge) propagate upstream. They are produced by a storm system with an Eulerian time scale equal to the period of a zero-mode edge wave with the wavelength of the storm spatial scale. Large amplitude edge waves were generated during Hurricane Wilma's landfall (2005) on the West Florida shelf with particularly severe flooding occurring upstream of the landfall site. 相似文献
ABSTRACTUnderstanding human dynamics after a major disaster is important to the region’s sustainable development. This study utilized land cover data to examine how Hurricane Katrina has affected the urban growth pattern in the Mississippi Delta in Louisiana. The study analyzed land cover changes from non-urban to urban in three metropolitan areas, Baton Rouge, New Orleans-Metairie, and Hammond, for two time periods, pre-Katrina (2001–2006) and post-Katrina (2006–2010). The study first applied a focal filter to extract continuous urban areas from the scattered urban pixels in the original remote sensing images. Statistical analyses were applied to develop initial functions between urban growth probability and several driving factors. A genetic algorithm was then used to calibrate the transition function, and cellular automata simulation based on the transition function was conducted to evaluate future urban growth patterns with and without the impact of Hurricane Katrina. The results show that elevation has become a much more important factor after Hurricane Katrina, and urban growth has shifted to higher elevation regions. The elevation most probable for new urban growth increased from 10.84 to 11.90 meters. Moreover, simulated future urban growth in this region indicates a decentralized trend, with more growth occurring in more distant regions with higher elevation. In the New Orleans metropolitan area, urban growth will continue to spill across Lake Pontchartrain to the satellite towns that are more than 50 minutes away by driving from the city center. 相似文献
A 1:50 scale physical model was constructed for the 17th Street Canal region, New Orleans, on the southern coast of Lake Pontchartrain, as part of the Interagency Performance Evaluation Task Force (IPET) study of Hurricane Katrina. The purpose of the 1350 m2 physical model that represented about 3.4 km2 of the local area was to aid in defining wave and water velocity conditions in the 17th Street Canal during the time period leading up to the breaching of the floodwall within the Canal. In the immediate period following this disaster, there were many hypothesis of failure put forth in the media. Some of these hypothesis indicated wave action may have been the underlying cause of the failure of the 17th Street Canal floodwall. Some performed numerical work with inappropriate boundary conditions, which indicated strong wave-generated currents may have caused erosion along the floodwalls. This physical model study indicated a number of wave-attenuating processes occurring as waves approached the location of the breach. Wave height reduction resulted due to: (1) refraction of wave energy over the shallower submerged land areas surrounding the harbor away from the canal; (2) reflection of energy off vertical walls in the region between the entrance to the canal near the Coast Guard Harbor and the bridge; and (3) interaction of the wave with the Hammond Highway bridge, including reflection and transmission loss. Wave heights near the lakeside of the bridge were 0.3-0.9 m in height, reduced from 1.8 to 2.7 m wave heights in the open lake. Waves on the south side of the bridge, near the breach, were further reduced to heights below 0.3 m. These results supported the conclusion that waves were not a significant factor for the 17th Street Canal floodwall failure. Other IPET investigations determined floodwall failure was of a geotechnical nature due to the high surge water level. The physical model also provided calibration information for numerical wave models. The effects of debris on flow and waves after the breach was formed were also investigated. 相似文献
Wave and combined wave-and-surge overtopping was significant across a large portion of the hurricane protection system of New Orleans during Hurricane Katrina. In particular, along the east-facing levees of the Mississippi River-Gulf Outlet (MRGO), the overtopping caused numerous levee breaches. This paper will focus on the MRGO levees, and will attempt to recreate the hydrodynamic conditions during Katrina to provide an estimate of the experienced overtopping rates. Due to the irregular beach profiles leading up to the levees and the general hydrodynamic complexity of the overtopping in this area, a Boussinesq wave model is employed. This model is shown to be accurate for the prediction of waves shoaling and breaking over irregular beach profiles, as well as for the overtopping of levees. With surge levels provided by ADCIRC and nearshore wave heights by STWAVE, the Boussinesq model is used to predict conditions at the MRGO levees for 10 h near the peak of Katrina. The peak simulated overtopping rates correlate well with expected levee damage thresholds and observations of damage in the levee system. Finally, the predicted overtopping rates are utilized to estimate a volumetric flooding rate as a function of time for the entire 20 km stretch of east-facing MRGO levees. 相似文献
A numerical-dynamic, tropical storm surge model, SLOSH (Sea, Land, and Overland Surges from Hurricanes), was originally developed for real-time forecasting of hurricane storm surges on continental shelves, across inland water bodies and along coastlines and for inland routing of water -either from the sea or from inland water bodies. The model is two-dimensional, covering water bodies and inundated terrain. In the present version available at the University of Puerto Rico a curvilinear, polar coordinate grid scheme is used. The grid cells are approximately 3.2 × 3.2 km in size.The model has been used in a revision of all coastal Flood Insurance Rate Maps (FIRM) for Puerto Rico and the U.S. Virgin Islands, and in hurricane evacuation studies. The FIRM's, since they are based on the 100 year stillwater elevation, are also used by the state Planning Board for regulatory purposes. The hurricane evacuation studies are used by emergency planners and personnel to assign shelters, escape routes, and delimit coastal zones that need to be evacuated during a hurricane threat.Recently, the acquisition of data from hurricane Hugo has allowed the first comparison of model results and observations for Puerto Rico and the other islands. 相似文献
Airborne bathymetric LIDAR observations along the Florida panhandle after Hurricane Dennis (2005) show the first unequivocal observations of surf-zone sand wave trains.
These are found in depths of 5m along the trough of the hurricane bar, where hindcasts show strong longshore currents only during severe storms. The waves extend over tens of kilometers of coast after Dennis but are absent from the same area in four other datasets. Observed wavelength to water depth ratios are comparable to river dunes and tidal sand waves but height to depth ratios are smaller, with the largest wave heights around 0.1 times the water depth. The sand wave generation mechanism is hypothesized to be from wind-and-wave-induced longshore currents, which were hindcast to be large during Dennis, with destruction from water wave orbital velocities. 相似文献
A bottomland flora that prevailed between 9900 and 6000 cal yr B.P. in a North Carolina stream valley may not reflect a regionally much wetter Atlantic climate, coeval with record drought in the Great Plains region and assumed dry Gulf coastal conditions. Such conditions were inferred for 6000 ± 1000 yr ago when the Bermuda High may have consistently occupied summer positions far to the NE. Arid episodes coeval with the Little River local wet interval are known from eolian sediments and pollen spectra in the Atlantic and the Gulf coastal plain. For multiple reasons, the regional extent, intensity, and duration of coastal aridity and alternating wet phases and the Bermuda High positions are not yet adequately constrained. The climate and edaphic causes for the steadily growing predominance of southern pines over hardwoods, achieved between 8900 and 4200 cal yr B.P. at different sites at different times are similarly still unresolved. New data from Shelby Lake, AL, reconfirms that no credible field or other proxy evidence exists for a previously postulated “catastrophic Gulf hurricane phase” in the late Holocene. 相似文献
The tendency for rising sea levels, combined with changes in the frequency and intensity of extreme storm events raises the potential for flooding and inundation of coastal locations such as Halifax Harbour, in the context of climate change. In this study, we consider three scenarios for extreme high water levels based on climate change scenarios and estimates for land subsidence, rising mean sea levels, and return period analysis for extreme events (from previous studies). We also investigate the effect of ocean waves on these estimates for extreme high water levels. Because the most damaging storm to make landfall in Nova Scotia over the last century was Hurricane Juan (2003), it was chosen to simulate the extreme case of storm-generated waves and wave run-up in Halifax Harbour. To simulate waves generated by Hurricane Juan, a nested-grid system consisting of two modern state-of-the-art operational wave models was used. High quality winds were used to drive the wave models, and the simulations used recently updated high resolution coastal bathymetry. Observed water elevation changes in Halifax Harbour were used in wave model simulations of Hurricane Juan. The Federal Emergency Management Agency's (FEMA) run-up model is used to estimate wave run-up elevation, which is validated with recorded high water observations along the coastline. Simulated waves and wave run-up elevations for Hurricane Juan suggest that the maximum significant wave heights at the mouth of the Harbour were 9.0 m, and the wave run-up was as high as 2.0 m along the shoreline of Halifax Harbour. In this way, we estimated the impact of waves and wave run-up on extreme high water elevations for three climate change scenarios in Halifax Harbour, under worst-case conditions. The sensitivity of these estimates is analyzed for different water level variations, wave propagation directions and shore slope profiles. [Traduit par la rédaction] La tendance à la hausse du niveau de la mer de pair avec les changements dans la fréquence et l'intensité des événements de tempêtes extrêmes augmentent le risque d'inondation et de submersion à des emplacements côtiers comme le port d'Halifax dans le contexte du changement climatique. Dans cette étude, nous examinons trois scénarios de niveaux de hautes eaux extrêmes basés sur des scénarios de changement climatique et estimations de subsidence du terrain, l’élévation du niveau moyen de la mer ainsi que l'analyse de la période de retour d’événements extrêmes (faite lors d’études antérieures). Nous examinons aussi les effets des vagues de l'océan sur ces estimations de niveaux de hautes eaux extrêmes. Étant donné que la tempête la plus dévastatrice à avoir touché terre en Nouvelle–Écosse au cours du dernier siècle a été l'ouragan Juan (2003), c'est celle-ci que nous avons choisie pour simuler le cas extrême de vagues produites par une tempête et de remontée de vagues dans le port d'Halifax. Pour simuler les vagues produites par Juan, nous nous sommes servis d'un système à grilles imbriquées consistant en deux modèles de vagues opérationnels à la fine pointe de la technologie. Les modèles de vagues étaient pilotés par des données de vent de haute qualité et les simulations disposaient d'une bathymétrie côtière à haute résolution récemment mise à jour. Les changements observés d’élévation de l'eau dans le port d'Halifax ont été utilisés dans les simulations de l'ouragan Juan par les modèles de vagues. Nous utilisons le modèle de remontée des vagues de la Federal Emergency Management Agency (FEMA) pour estimer la hauteur des remontées, qui est validée par rapport aux observations de hautes eaux enregistrées le long de la côte. Les vagues et les hauteurs de remontée des vagues simulées pour l'ouragan Juan suggèrent que la hauteur significative maximale des vagues à l'entrée du port était de 9,0 m et la remontée des vagues atteignait 2,0 m le long de la côte du port d'Halifax. Nous avons de cette manière estimé l'impact des vagues et de la remontée des vagues sur l’élévation des hautes eaux extrêmes pour trois scénarios de changement climatique dans le port d'Halifax dans les conditions les plus défavorables. Nous analysons la sensibilité de ces estimations à divers changements de niveau d'eau, directions de propagation et profils de pente côtière. 相似文献