排序方式: 共有98条查询结果,搜索用时 15 毫秒
21.
Bridge scour modeling requires storm surge hydrographs as open ocean boundary conditions for coastal waters surrounding tidal inlets. These open coast storm surge hydrographs are used to accurately determine both horizontal and vertical circulation patterns, and thus scour, within the inlet and bay for an extreme event. At present, very little information is available on the effect that tidal inlets have on these open coast storm surge hydrographs. Furthermore, current modeling practice enforces a single design hydrograph along the open coast boundary for bridge scour models. This study expands on these concepts and provides a more fundamental understanding on both of these modeling areas. 相似文献
22.
Michael Leitner Michelle Barnett Joshua Kent Tom Barnett 《The Professional geographer》2013,65(2):244-261
This research assesses the impact that one natural disaster—Hurricane Katrina—and subsequent population movements have had on crime in the state of Louisiana. Using Index Crimes from the Louisiana Commission on Law Enforcement and population estimates from the U.S. Census Bureau, time series of violent and nonviolent crime rates were first analyzed using autoregressive, integrated, and moving average (ARIMA) models. Cumulative percentile maps were created next to analyze spatial trends of crime hot and cold spots in the study area. Overall, results from this research support theories that suggest that crime rates remain stable or actually decline in regions receiving evacuees from areas hardest hit by the hurricane. In the case of Orleans Parish, results are inconclusive due to unreliable crime rates for the period following Hurricane Katrina until the beginning of 2006. It is suggested that crime rates in Orleans Parish fell drastically after the storm. However, some crime types, including robbery, burglary, and larceny, returned to pre-Katrina levels and murder and aggravated assault even exceeded prestorm averages by the end of December 2007. 相似文献
23.
利用2006—2010年的CloudSat热带气旋过境数据集资料,定量分析了大西洋地区飓风的云、降水和热力结构在不同演变阶段内的分布特征,结果表明:雷达反射率的发生概率以5 km高度为"拐点"呈现不同的分布特点,且成熟阶段的回波强度明显大于发展和消亡阶段.各径向环内深对流云发生概率始终最大,积云和雨层云始终最小.冰水含量的最大值位于内核区且沿径向不断减小,有效粒子半径和分布宽度参数随高度减小而粒子数浓度却增大.温度距平在距离中心200 km以内随飓风演变不断增大,而200 km以外始终较小.各阶段8 km以下存在湿心区,而其上方正好对应暖心区.内核区发展阶段存在近饱和区而成熟和消亡阶段存在向外倾斜的未饱和区.各阶段不同径向环内4 km以上主要为稳定层结而4 km以下的层结特性各异,且假相当位温沿径向逐渐减小. 相似文献
24.
In this paper a methodology is applied to generate synthetic wave series during mean and extreme conditions. An analysis is carried out that describes mean and extreme wave behavior for several climatic conditions along the Colombian Caribbean Coast. During mean conditions, the most energetic ocean waves are observed during the DJF season for both ENSO phases (El Niño and La Niña) for most of the Caribbean Sea. During the Niño years, there is a reduction in the speed of the north-east trade winds and their associated waves, but only in the DJF and MAM seasons. However, during the JJA season, this situation is reversed with the highest values occurring during El Niño and low values appearing during La Niña. Toward the east around the Guajira region, this general pattern is shown to change significantly. For extreme conditions, the results show a significant influence of extreme events toward the northwest, around La Guajira and the insular zones of San Andres and Providence when compared with other regions along the coast. All of these results (including the synthetic wave series) provide a design and management tool for the successful implementation of any coastal project (scientific or consulting) in Colombia. 相似文献
25.
Tropical cyclone ocean–wave model interactions are examined using an ESMF – (Earth System Modeling Framework) based tropical cyclone (TC) version of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®1). This study investigates Hurricane Ivan, which traversed the Gulf of Mexico (GOM) in September 2004. Several oceanic and wave observational data sets, including Acoustic Doppler Current Profilers (ADCPs), National Oceanic and Atmospheric Administration (NOAA) buoys, satellite altimeter data, and Scanning Radar Altimeter (SRA) data, allow for a unique analysis of the coupled atmosphere, ocean (Navy Coastal Ocean Model, NCOM), and wave (Simulating WAves Nearshore, SWAN) models in COAMPS-TC. To determine the feasibility of coupling NCOM to SWAN in high-wind conditions during Hurricane Ivan, near-surface currents in NCOM were first compared to near-surface ADCP observations. Recent modifications to SWAN, including new wind-to-wave energy input and wave-breaking energy dissipation source functions, as well as a new ocean surface drag coefficient formulation appropriate for high-wind conditions, significantly improved the forecast wave field properties, such as significant wave height (SWH), in TC conditions. Further results show that the ocean-to-wave model coupling, which allows for the strong, hurricane-induced, surface currents in NCOM to interact with SWAN, provided additional improvements to the forecast SWH field. Additionally, wave-to-ocean model coupling, which included the input of the Stokes Drift Current (SDC) calculated from the SWAN wave spectra to NCOM, is examined. The models indicate that the SDC was on the order of 10–25% of the near-surface Eulerian current during Ivan. Recent studies of the importance of the SDC and the resulting Langmuir turbulence on vertical ocean mixing in TCs is also discussed. 相似文献
26.
飓风Juan(2003)路径附近实测飓风浪的谱特性研究 总被引:1,自引:1,他引:1
Hurricane Juan provides an excellent opportunity to probe into the detailed wave spectral patterns and spectral parameters of a hurricane system, with enough wave spectral observations around Juan's track in the deep ocean and shallow coastal water. In this study, Hurricane Juan and wave observation stations around Juan's track are introduced. Variations of wave composition are discussed and analyzed based on time series of one-dimensional frequency spectra, as well as wave steepness around Juan's track: before, during, and after Juan's passing. Wave spectral involvement is studied based on the observed one-dimensional spectra and two-dimensional spectra during the hurricane. The standardization method of the observed wave spectra during Hurricane Juan is discussed, and the standardized spectra show relatively conservative behavior, in spite of the huge variation in wave spectral energy, spectral peak, and peak frequency during this hurricane. Spectral widths' variation during Hurricane Juan are calculated and analyzed. A two-layer nesting WW3 model simulation is applied to simulate the one-dimensional and two-dimensional wave spectra, in order to examine WW3's ability in simulating detailed wave structure during Hurricane Juan. 相似文献
27.
Understanding changes in the size of tropical cyclone (TC) wind and rain fields before landfall can improve identification of areas that may experience damage. We examine 25 Atlantic basin TCs for 36 h before gale-force winds (R17) cross land. Rain field extents are measured from satellite estimates of rain rates using a Geographic Information System. In each quadrant, R17 is obtained from the Extended Best Track data-set and correlated with the extent of the rain field. In general, both fields expand prior to landfall. The non-linearity of this trend poses problems for persistence forecast models. The largest wind fields are located over the Atlantic Ocean. Correlations between wind and rain field extent are strongly positive for Atlantic cases regardless of whether extratropical transition (ET) occurs and are associated with the direction of vertical wind shear. Poor correlations exist for Gulf observations. Rain fields extend farther towards the east during ET when vertical wind shear is stronger, but wind fields are not significantly different when separating cases based on whether or not ET occurs. As rain fields extend farther than wind fields in 33% of Gulf cases, moderately heavy rainfall may commence before damaging winds arrive, decreasing the time available for preparedness activities. 相似文献
28.
Numerical investigation of Hurricane Gilbert (1988) effect on the Loop Current warm core eddy (WCE) in the Gulf of Mexico
is performed using the Modular Ocean Model version 2 (MOM2). Results show that the storm-induced maximum sea surface temperature
(SST) decrease in Gilbert’s wake is over 2.5°C, as compared with the 3.5°C cooling in the absence of the WCE. The near-inertial
oscillation in the wake reduces significantly in an along-track direction with the presence of the WCE. This effect is also
reflected between the mixed layer and the thermocline, where the current directions are reversed with the upper layer. After
two inertial periods (IP), the current reversal is much less obvious. In addition, it is demonstrated that Hurricane Gilbert
wind stress increases the current speed of the WCE by approximate 133%. With the forcing of Gilbert, the simulated translation
direction and speed of the WCE towards the Mexican coast are closer to the observed (42% more accurate in distance and 78%
more accurate in direction) compared with the simulation without the Gilbert forcing. The simulated ocean response to Gilbert
generally agrees with the recent observations in Hurricane Fabian. 相似文献
29.
30.
Ping Zhu 《Natural Hazards》2008,47(3):577-591
Hurricane wind damage constitutes the largest percentage of catastrophic insured losses in the US. Yet the complicated wind
structures and their changes are not fully understood and, thus, have not been considered in current risk catastrophic models.
To obtain realistic landfall hurricane surface winds, a large eddy simulation (LES) framework in a weather forecasting mode
has been developed from a multiple nested Weather Research & Forecasting (WRF) model to explicitly simulate a spectrum of
scales from large-scale background flow, hurricane vortex, mesoscale organizations, down to fine-scale turbulent eddies in
a unified system. The unique WRF-LES enables the high resolution data to be generated in a realistic environment as a hurricane
evolves. In this paper, a simulation of the landfalling Hurricane Katrina is presented to demonstrate various features of
the WRF-LES. It shows that the localized damaging winds are caused by the large eddy circulations generated in the hurricane
boundary layer. With a sufficient computational power, WRF-LES has the potential to be developed into the next generation
operational public wind-field model for hurricane wind damage mitigation. 相似文献