首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   7篇
  国内免费   2篇
地球物理   69篇
地质学   27篇
海洋学   8篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2011年   2篇
  2010年   5篇
  2009年   7篇
  2008年   1篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   6篇
  2003年   3篇
  2002年   1篇
  2001年   7篇
  2000年   4篇
  1999年   10篇
  1998年   12篇
  1997年   2篇
  1996年   5篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1987年   2篇
  1982年   1篇
排序方式: 共有104条查询结果,搜索用时 31 毫秒
11.
Fulvic acids of different origin, spray deposited on polished silicon after dissolution in high‐purity water without any additives, were analysed by time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) in combination with oblique 24...36 keV SF5+ ion bombardment. The observed, highly reproducible mass spectra cover more than five orders of magnitude in dynamic range, without background subtraction. Apart from lines due to atomic ions and low‐mass ion fragments, the mass spectra exhibit broad maxima between m/z 200...350, mainly due to a beat‐like superposition of lines at every single mass number, up to at least m/z 400. In the negative ion spectra the beats have a spacing of m/z 14, corresponding to a CH2‐unit. The high‐mass tails of the spectra extend well beyond m/z 5000, with similar slopes in the positive and the negative ion mass spectra. The negative spectra appear to be less affected by fragmentation products than the positive spectra. Fulvic acids (FAs) of different origin show distinctly different spectra, with mean masses ranging between m/z ≈ 450 and 580 (for a low‐mass cut‐off m/z 150). To further verify the ability of TOF‐SIMS to detect molecules and clusters with masses significantly above the maxima of the FA spectra, samples of glycyrrhizic acid (GA, as GA ammonium salt with molecular weight 840) were also analysed. Parent ions as well as multimers (GA)n were observed as positive and negative ions, up to n = 4 (m/z 3320). The results are compared with spectra recently obtained by other mass spectrometric techniques.  相似文献   
12.
The reduction in light emission of the marine bacterium Vibrio fischeri used in the standard Microtox® bioassay was measured for the metals copper and mercury. The concentration at which the light emission was reduced by 50% (EC50) was determined to be (3.43 ± 0.83) μmol/L for Cu2+ and (0.66 ± 0.01) μmol/L for Hg2+. The reduction of the toxicity of these metals by humic and fulvic acids were studied using IHSS Standard and Reference Materials. Copper toxicity was reduced 17...20% by the soil and peat fulvic acids and 9...20% by the aquatic fulvic acids. While there appeared to be little difference in the reduction of Cu toxicity by fulvic acids from soils, peats, or aquatic systems, Hg toxicity was reduced 3.6...7.3% by the soils and peats, while aquatic fulvic acids reduced Hg toxicity 14...16%. Soil fulvic acids appear to have significantly less capacity to reduce Hg toxicity than Cu toxicity. Humic acids had much higher reductions of Cu toxicity (44...124%) compared to the fulvic acids, with little difference between aquatic and soil or peat humic acids, 44...124% and 67...100%, respectively. However, humic and fulvic acids, regardless of origin, had approximately the same effect on Hg toxicity with 3.5...16% reduction by fulvic acids and 8...20% reduction by humic acids. Unlike the fulvic acids, no clear trend was observed relative to origin of the humic acids. There was no correlation between percent reduction of Cu or Hg toxicity by the organic compounds and copper binding capacity (CuBC), C/N ratio, or carboxyl content of the materials. Examination of natural organic matter (NOM) isolated by reverse osmosis techniques from three water sources had reductions of both Cu and Hg toxicity that were most similar to the Suwannee River and Nordic fulvic acids.  相似文献   
13.
The properties and transformation of dissolved organic matter (DOM) extracted (10 L water per kilogram compost) from municipal solid waste (MSW) compost at five stages (days 47, 77, 105, 126, and 187) of composting were investigated. The DOM was fractionated into hydrophobic or hydrophilic neutrals, acids, and bases. The unfractionated DOM, the hydrophobic acids and neutrals (HoA and HoN, respectively), and the hydrophilic neutrals (HiN) fractions were studied using solid-state 13C-NMR, FTIR, and DRIFT spectroscopy. The HoA fraction was found to be the dominant (percentage of total DOM) hydrophobic fraction, exhibiting a moderate increase during composting. The HoN fraction increased sharply from less than 1% to 18% of the total DOM during 187 days of composting, while the hydrophobic bases (HoB) exhibited the opposite trend. The HiN represented the major fraction of the hydrophiles up to 120 days of composting, decreasing thereafter by 38%. The relative concentration of the hydrophilic acids and bases (HiA and HiB, respectively) exhibited no consistent trend during composting. DRIFT spectra of the unfractionated DOM taken from the composting MSW revealed a decreasing level of polysaccharide structures with time. The 13C-NMR and FTIR spectra of the HoA fraction exhibited a polyphenol-humic structure, whereas the HoN spectra exhibited strong aliphatic features. The spectra of the HiN fraction confirmed its polysaccharide nature. During the final stage of composting, the DOM concentration was steady, while a relative decrease of HiN concomitant with an increase of HoA and HoN fractions was observed. These indicate that the DOM contained a low concentration of biodegradable organic matter and a higher content of macromolecules related to humic substances. The biological significance and heavy metal binding of these fractions are being studied based on earlier observations showing enhanced plant growth in the presence of DOM extracted from mature as opposed to immature compost.  相似文献   
14.
Dissolved total carbohydrates (DTCH), dissolved free monosaccharides (DFMS), dissolved organic carbon (DOC), biodegradable DOC (BDOC), and humic substances (HS) were measured in White Clay Creek (WCC), a stream in southeastern Pennsylvania Piedmont, USA. Samples were collected over different seasons and under baseflow and stormflow conditions. DOC concentrations ranged from 1.0 to 12.8 mg/L C with the highest concentrations associated with stormflows. Carbohydrates ranged from 0.42 to 12.4 μM and accounted for 2.9 to 12.7% of the DOC. Humic substances represented the major DOC fraction, accounting for 55 to 72% of the DOC pool under all flow conditions. The humic fraction had a lower carbohydrate content (4.4%) than the non-humic fraction of DOC (7.2%). Stormflow DOC was enriched in carbohydrates relative to baseflow DOC, but the percentage of humic-C changed little. Carbohydrates were primarily present as dissolved polysaccharides (55%), but a significant fraction was bound to humic substances (40%), while a small proportion was present as monosaccharides (5%). The major monosaccharides in stream water, listed in order of decreasing concentration, included glucose, galactose, rhamnose, xylose, arabinose, mannose, and fucose. On average (30.6 ± 7.4)% (n = 44) of the stream water DOC was biodegradable, and carbohydrates accounted for 9.9 to 17.7% of the BDOC.  相似文献   
15.
An enzyme assay was developed for studies on peroxidase activities in humic lake water. 3,4-Dimethoxybenzyl alcohol (veratryl alcohol, VeraOH) was used as tracer substrate, and peroxidase (EC 1.11.1.7) activity was measured by high-performance liquid chromatography. The chemical stability of VeraOH and its application as peroxidase substrate was tested under light and dark conditions, different hydrogen peroxide (H2O2) concentrations and humic matter contents. VeraOH was stable under low UV radiation at in situ conditions in lake water (<0.010...0.25 kJ m–2 d–1), laboratory conditions (<0.05...0.30 kJ m–2 d–1), and low (1...100 μM) H2O2 concentrations. However, peroxides oxidized VeraOH above 1...10 mM H2O2 concentration in sterile Millipore-Q and humic lake water. Dark incubations showed little VeraOH oxidation products. The developed peroxidase assay was tested in the growth medium of Phanerochaete chrysosporium and a bacteria isolate (P.M.D. 20.4.3.1) from mesohumic lake Pääjärvi. Peroxidase activities were also measured in natural microbial communities under standard laboratory and under in situ conditions in humic lake water. Incubation times of about 5 to 12 days were usually needed to record significant (P < 0.05) peroxidase activities, in lake waters. In situ peroxidase activities varied in pelagial surface water (0...0.5 m) on a seasonal scale between 74 nmol L–1 h–1 and 273 nmol L–1 (mean: 176 nmol L–1 h–1) and within the water column between 110 nmol L–1 h–1 and 800 nmol L–1 h–1 (mean: 500 nmol L–1 h–1) in polyhumic lake Mekkojärvi.  相似文献   
16.
The fluorescence decay of aquatic natural organic matter (NOM) samples was investigated using the time-correlated single photon counting technique (TCSPC). Two different approaches for the data analysis are presented: the discrete component approach (DCA) and the exponential series method (ESM). The parameter set obtained in the DCA is discussed in terms of characterization for NOM of different origins. However, the obtained parameter set can only be interpreted as operationally defined. Using the ESM for a fluorescence decay time distribution analysis no a priori assumption about the number of fluorescing components was introduced into the data analysis. The interpretation of fluorescence decay time data for samples before and after ozonation is in good agreement with results of other analytical methods.  相似文献   
17.
GC/MS Nontarget Analysis to Examine an Organic Groundwater Contamination. Part II: Graphical and Multivariate Methods for Searching Key Substances In the nontarget analysis, a maximum of organic substances was extracted by a sequence which separates high polar, medium polar, and nonpolar compounds. This leads to the detection of 477 different organic substances in the example of the groundwater contamination investigated. To reduce the high expense for an exact identification of 477 compounds as a first step the individual compound is defined as a data set of retention time and the mass spectrum belonging to this retention time. The table of data contains now 477 individual compounds in groundwater samples collected at 10 different locations. The application of mathematical filters helps to reduce the size of the data set. Graphical methods enable large amounts of data to be visualized in a clear manner and enable to detect patterns in a data set. These patterns are the key to select typical compounds as indicator substances for the contamination source as well as the geogenic background. Similarities between the groundwater samples should not be changed by selection of the indicator compounds. Therefore, cluster analysis was applied as a controlling instrument for the final selection of the indicator compounds. The combination of graphical and multivariate data analysis is a useful tool to deduce indicator compounds for monitoring and control of complex environmental pollution states.  相似文献   
18.
Investigations of the Adsorptive Separation of Volatile Chlorinated Hydrocarbons (VCHC) from Water with Humic Substance by Novel Polymeric Adsorbents and Activated Carbons. Part II: Dynamics of Adsorption In this publication, the dynamics of adsorption of different volatile chlorinated hydrocarbons (VCHC) (1,2-dichloroethane, 1,1,1-trichloroethane, trichloroethene) and a humic substance from water as well as of these VCHC from water with humic substance onto novel polymeric ad-[QJ][HR] sorbents (WOFATIT EP 63, DOWEX XUS 43493, MACRONET MN 100 and MN 200) was studied in comparison to activated carbons (NORIT ROW 0.8 SUPRA, PRECOLITH BKK 3, HYDRAFFIN CG). The obtained breakthrough curves and the following predicted characteristic values reveal that the polymeric adsorbents do not remove or remove the humic substance only with low adsorption capacity in contrast to the activated carbons. At the adsorption of the VCHC from water with humic substance it was determined that the influence of the humic substance on the adsorption capacity is substantially less on polymeric adsorbents than on activated carbons.  相似文献   
19.
A natural decay of plant and animal biomass in aquatic environments results in the release of different simple structured organic substances into water. In our laboratory experiments we investigated whether some of them, e.g., starch or peptone, and also a complex yeast biomass can be transformed into humic-like substances by natural assemblages and some pure cultures of aquatic microorganisms. After a 6 months incubation most of the cultural media enriched with those natural organic substrates turned dark in color and humic-like substances (HS) could be isolated. However, the original substrate organic carbon was mainly mineralized in microbial cultures, and only about 3 % C was converted into HS. Total yields of HS differed in dependence of the individual substrate used (peptone > yeast > starch), the origin of inoculum (river > lake > groundwater), and the incubation temperature (20°C > 10°C). According to their elemental composition, and their spectroscopical and electrophoretic characteristics the microbially formed HS resembled natural aquatic humic matter, but were higher in aliphatic constituents (carbohydrates, peptides) and lower in aromatic structures. HS-like substances were also obtained from pure cultures of a bacterium Bacillus sphaericus and a fungus Cladosporium cladosporioides. The 13C and 15N isotopic contents of the microbially produced HS differed in dependence on the microbial inoculum and the type of organic substrates used, but in general they indicated anabolic processes to be mainly responsible for the humification of the simple organic substrates used in our experiments.  相似文献   
20.
To explore whether quinone moieties are important in chromophoric dissolved organic matter (CDOM) photochemistry in natural waters, hydrogen peroxide (H2O2) production and associated optical property changes were measured in aqueous solutions irradiated with a Xenon lamp for CDOM model compounds (dihydroquinone, benzoquinone, anthraquinone, napthoquinone, ubiquinone, humic acid HA, fulvic acid FA). All compounds produced H2O2 with concentrations ranging from 15 to 500 μM. Production rates were higher for HA vs. FA (1.32 vs. 0.176 mM h−1); values ranged from 6.99 to 0.137 mM h−1 for quinones. Apparent quantum yields (Θapp; measure of photochemical production efficiency) were higher for HA vs. FA (0.113 vs. 0.016) and ranged from 0.0018 to 0.083 for quinones. Dihydroquinone, the reduced form of benzoquinone, had a higher production rate and efficiency than its oxidized form. Post-irradiation, quinone compounds had absorption spectra similar to HA and FA and 3D-excitation–emission matrix fluorescence spectra (EEMs) with fluorescent peaks in regions associated with CDOM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号