首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   51篇
  国内免费   84篇
测绘学   18篇
地球物理   74篇
地质学   320篇
综合类   36篇
自然地理   38篇
  2024年   2篇
  2023年   3篇
  2022年   7篇
  2021年   14篇
  2020年   17篇
  2019年   19篇
  2018年   16篇
  2017年   21篇
  2016年   16篇
  2015年   10篇
  2014年   15篇
  2013年   32篇
  2012年   14篇
  2011年   14篇
  2010年   11篇
  2009年   28篇
  2008年   29篇
  2007年   20篇
  2006年   29篇
  2005年   19篇
  2004年   17篇
  2003年   15篇
  2002年   13篇
  2001年   9篇
  2000年   38篇
  1999年   6篇
  1998年   6篇
  1997年   8篇
  1996年   8篇
  1995年   5篇
  1994年   9篇
  1993年   3篇
  1992年   1篇
  1991年   5篇
  1989年   5篇
  1980年   1篇
  1977年   1篇
排序方式: 共有486条查询结果,搜索用时 46 毫秒
41.
Quantitative glacial chronologies of past glaciations are sparse in the Himalaya, and mostly absent in the Kashmir Himalaya. We used cosmogenic 10Be exposure dating, and geomorphological mapping to reconstruct glacial advances of the Thajwas Glacier (TG) in the Great Himalayan Range of the Kashmir Himalaya. From 10Be exposure dating of ten moraine boulders, four glacial stages with ages ~20.77 ± 2.28 ka, ~11.46 ± 1.69 ka, ~9.12 ± 1.39 ka and ~4.19 ± 0.78 ka, were identified. The reconstructed cosmogenic radionuclide ages confirmed the global Last Glacial Maximum (gLGM), Younger Dryas, Early Holocene, and Neoglaciation episodes. As per area and volume change analyses, the TG has lost 51.1 km2 of its area and a volume of 2.64 km3 during the last 20.77 ± 2.28 ka. Overall, the results suggested that the TG has lost 64% of area and 73% of volume from the Last glacial maximum to Neoglaciation and about 85.74% and 87.67% of area and volume, respectively, from Neoglaciation to the present day. The equilibrium line altitude of the TG fluctuated from 4238 m a.s.l present to 3365 m a.s.l during the gLGM (20.77 ± 2.28 ka). The significant cooling induced by a drop in mean ambient temperature resulted in a positive mass balance of the TG during the gLGM. Subsequently the melting accelerated due to the continuing rise of the global ambient temperature. Paleo-glacial history reconstruction of the Kashmir Himalaya, with its specific geomorphic and climatic setting, would help close the information gap about the chronology of past regional glacial episodes.  相似文献   
42.
喜马拉雅淡色花岗岩   总被引:62,自引:33,他引:29  
在青藏高原南部的喜马拉雅地区,分布有两条世界瞩目的淡色花岗岩带。南带主要沿高喜马拉雅和特提斯喜马拉雅之间的藏南拆离系(STDS)分布,俗称高喜马拉雅淡色花岗岩带,构成喜马拉雅山的主体。北带淡色花岗岩位于特提斯喜马拉雅单元内,又被称之为特提斯喜马拉雅淡色花岗岩带。这些花岗岩多以规模不等的岩席形式侵入到周边沉积-变质岩系之中,或者呈岩株状产出于变质穹窿的核部。岩体本身大多岩性均匀,变形程度不等,但岩体边缘可见较多的围岩捕虏体,并在部分情况下见及围岩的接触变质作用,反映它们的异地侵位特征。上述两带中的淡色花岗岩在矿物组成和岩石类型上表现为惊人的相似性,主要由不同比例的石英、钾长石、斜长石、黑云母(5%)、白云母、电气石和石榴石等构成二云母花岗岩、电气石花岗岩和石榴石花岗岩三大主要岩石类型。从不同地区的野外观察来看,二云母花岗岩为喜马拉雅淡色花岗岩的主体岩石类型,而电气石花岗岩和石榴石花岗岩主要以规模不等的脉体形式赋存于二云母花岗岩之中,反映前两者晚期侵位的特征。地球化学特征上,这些花岗岩具有高Si、Al、K,低Ca、Mg、Fe、Ti的特点,接近花岗岩的低共熔点组分。绝大多数淡色花岗岩具有较高的含铝指数,属于过铝花岗岩。微量元素表现为较大的变化范围,但总体上表现为富集大离子亲石元素K、Rb和放射性元素U,而不同程度亏损Ba、Th、Nb、Sr、Ti等元素。稀土元素总量总体上明显低于世界上酸性岩的平均丰度,且绝大部分表现为轻-中等程度的稀土元素分馏和不同程度的Eu负异常。传统认为,喜马拉雅淡色花岗岩是原地-近原地侵位的纯地壳来源的低熔花岗岩。但本文通过分析提出,该花岗岩可能是从一种高温的花岗岩浆演化而来,其岩浆源区的性质或成因类型目前还难以确定。该岩浆在上升侵位的过程中曾经历过大规模地壳物质的混染,并发生了高度分离结晶作用。因此,喜马拉雅淡色花岗岩首先是一种高分异型的花岗岩,是真正意义上的异地深成侵入体,而并不是原地或半原地的部分熔融体。这种以大规模地壳混染和结晶分异作用为特征的花岗岩系,在花岗岩的研究内容中还未被充分地讨论。以前根据相关信息认为这些岩石来自于沉积岩部分熔融的结论,只是较多地注意到了后期地壳混染和结晶分异作用的特征。即使这些岩石的原始岩浆将来被证明真的来源于沉积岩系的部分熔融,那以前的结论也只能说是"歪打正着"。根据形成年龄和地质-地球化学特征,本文将这些花岗岩划分为原喜马拉雅(44~26Ma)、新喜马拉雅(26~13Ma)和后喜马拉雅(13~7Ma)三大阶段。其中第一阶段对应印度-亚洲汇聚而导致的大陆碰撞造山作用,而后两个阶段同加厚的喜马拉雅-青藏高原碰撞造山带拆沉作用有关,对应青藏高原的全面隆升。根据这些淡色花岗岩的岩石与地球化学特征,我们还不能支持青藏高原存在广泛的中地壳流动的模型。相反,俯冲的高喜马拉雅岩系在深部的部分熔融及随该岩系折返而发生的分离结晶作用可很好地解释淡色花岗岩所具有的系列特征。  相似文献   
43.
Resource use efficiency analyses of village ecosystem are necessary for effective and efficient planning of resource utilization. This paper deals with economic and energy input-output analyses of different components of village ecosystem in representative buffer zone villages, which are practicing transhumance and settled way of lifestyles in Nanda Devi Biosphere Reserve (NDBR) of Garhwal Himalaya. While the villages practicing transhumance used various natural resources spatially segregated,the villages practicing settled way of lifestyle have to manage resources from a limited spatial area through rotation and varied extraction intensities. Forests subsidized the production activity in both type of villages and the per capita resource extractions were found to be greater in tran~humance village than settled village. Though crops provided maximum energy, in terms of economic criteria, animal husbandry played important role in both settled and transhumance villages. As villages representing both the situations showed different ways of adjustments to the conservation oriented land use changes, management authority needs to address the eco-development plans fulfilling the aspirations of all people traditionally using the resources of the Reserve to reduce the conflicts and encourage their participation in the conservation of the area.  相似文献   
44.
Methods and techniques for the identification, monitoring and management of natural hazards in high mountain areas are enumerated and described. A case study from the western Himalayan Kullu District in Himachal Pradesh, India is used to illustrate some of the methods. Research on the general topic has been conducted over three decades and that in the Kullu District has been carried out since 1994. Early methods of hazards identification in high mountain areas involved intensive and lengthy fieldwork and mapping with primary reliance on interpretation of landforms, sediments and vegetation thought to be indicative of slope fail ures, rock falls, debris flows, floods and accelerated soil surface erosion. Augmented by the use of airphotos and ad hoc observations of specific events over time, these methods resulted in the gradual accumulation of information on hazardous sites and the beginnings of a chronology of occurrences in an area. The use of historical methods applied to written and photographic material, often held in archives and libraries, further improved the resolution of hazards information. In the past two decades, both the need for, and the ability to, accurately identify potential hazards have increased. The need for accurate information and monitoring comes about as a result of rapid growth in population, settlements, transportation infrastructure and intensified land uses and, therefore, risk and vulnerability in mountain areas. Ability has improved as the traditional methods of gathering and manipulating data have been supplemented by the use of remotesensing, automated terrain modeling, global positioning systems and geographical information systems. This paper focuses on the development and application of the latter methods and techniques to characterize and monitor hazards in high mountain areas.  相似文献   
45.
The Kathmandu and Banepa Basins, Central Nepal, are located in a large syncline of the Lesser Himalayas. The Older Kathmandu Lake evolved during the Pliocene and early Pleistocene; the Younger Kathmandu Lake, which is the focus of this study, is infilled with late Quaternary sediments. Three formations, arranged in stratigraphical order, the Kalimati, Gokarna and Thoka Formations formed during the infilling stage of this lacustrine basin. Structural and textural sedimentological analyses, a chemical survey across the basin and mineralogical investigations of fine‐grained sediments form the basis of this palaeogeographical study. The basin under investigation was covered by a perennial freshwater lake before 30 000 yr BP. The lake was infilled with alluvial and fluvial sediments delivered mainly from the mountains north of the basin. A fairly low gradient was favourable for the formation of diatomaceous earths, carbonaceous mudstones and siltstones, which were laid down in the centre of the lake and in small ponds. Towards the basin edge, lacustrine sediments gave way to deltaic deposits spread across the delta plain. Crevasse splays and anastomosing rivers mainly delivered suspended load for the widespread siltstones and mudstones. The proximal parts of the alluvial–fluvial sedimentary wedge contain debris flows that interfinger with fine‐grained floodplain deposits. Three highstands of the water‐level (>30 000 yr BP, 28 000–19 000 yr BP, 11 000–4000 yr BP (?)) have been recognised in the sedimentary record of the younger Kathmandu Lake in the Late Quaternary. Second‐order water‐level fluctuations are assumed to be triggered by local processes (damming by tectonically induced landslides). First‐order water‐level fluctuations are the result of climatic changes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
46.
Starting with a discussion of development concepts which were applied in practice and which followed the developmentalist paradigm the expansion of traffic infrastructure in colonial and post-colonial periods is presented for the High Asian mountain rim. Selective railways and roads are the major feature of this development, which aimed first on serving the convenience of hill station visitors and followed strategic considerations later on. This bias between regional planning and implementation remains a characteristic feature. At the same time traffic infrastructure without asphalt roads is important for the mountain areas, thus breaking up the strong correlation between development and asphalt roads.  相似文献   
47.
Structural and thermochronological studies of the Kampa Dome provide constraints on timing and mechanisms of gneiss dome formation in southern Tibet. The core of Kampa Dome contains the Kampa Granite, a Cambrian orthogneiss that was deformed under high temperature (sub-solidus) conditions during Himalayan orogenesis. The Kampa Granite is intruded by syn-tectonic leucogranite dikes and sills of probable Oligocene to Miocene age. Overlying Paleozoic to Mesozoic metasedimentary rocks decrease in peak metamorphic grade from kyanite + staurolite grade at the base of the sequence to unmetamorphosed at the top. The Kampa Shear Zone traverses the Kampa Granite — metasediment contact and contains evidence for high-temperature to low-temperature ductile deformation and brittle faulting. The shear zone is interpreted to represent an exhumed portion of the South Tibetan Detachment System. Biotite and muscovite 40Ar/39Ar thermochronology from the metasedimentary sequence yields disturbed spectra with 14.22 ± 0.18 to 15.54 ± 0.39 Ma cooling ages and concordant spectra with 14.64 ± 0.15 to 14.68 ± 0.07 Ma cooling ages. Petrographic investigations suggest disturbed samples are associated with excess argon, intracrystalline deformation, mineral and fluid inclusions and/or chloritization that led to variations in argon systematics. We conclude that the entire metasedimentary sequence cooled rapidly through mica closure temperatures at  14.6 Ma. The Kampa Granite yields the youngest biotite 40Ar/39Ar ages of  13.7 Ma immediately below the granite–metasediment contact. We suggest that this age variation reflects either varying mica closure temperatures, re-heating of the Kampa Granite biotites above closure temperatures between 14.6 Ma and 13.7 Ma, or juxtaposition of rocks with different thermal histories. Our data do not corroborate the “inverse” mica cooling gradient observed in adjacent North Himalayan gneiss domes. Instead, we infer that mica cooling occurred in response to exhumation and conduction related to top-to-north normal faulting in the overlying sequence, top-to-south thrusting at depth, and coeval surface denudation.  相似文献   
48.
Talc deposits of Rema area in the Kumaun Inner Lesser Himalaya are hosted within high magnesium carbonates of the Proterozoic Deoban Formation. These deposits occur as irregular patches or pockets mainly within magnesite bodies, along with impurities of magnesite, dolomite and clinochlore. Textures represent different phases of reactions between magnesite and silica to produce talc. Petrography, XRD and geochemistry reveal that the talc has primarily developed at the expense of magnesite and silica, leaving dolomite largely un-reacted. Early fluid inclusions in magnesite and dolomite associated with talc are filled with H2O+NaCl+KCl ± MgCl2 ± CaCl2 fluids, which represent basin fluid system during diagenesis of carbonates. Their varied degree of re-equilibration was although not pervasive but points to increased burial, and hence requires careful interpretation. H2O-CO2 fluid with XCO2 between 0.06 and 0.12 was equilibrated with talc formation. The reaction dolomite+quartz → talc was not extensive because T-XCO2 was not favourable, and talc was developed principally after magnesite+quartz.  相似文献   
49.
Elemental mobility based on major element geochemistry from 58 horizons related to six paleosols profiles in a typical Miocene — Pliocene Siwalik fluvial sequence in the NW Himalaya has been reported here. The paleosols developed over felsic parent material of fine to medium grained sandstone indicate notable enrichment of sesquioxides (Al2O3 = 29 % and Fe2O3 = 54 %) depicting significant leaching and dissolution. The depletion of base cations (mean wt% of Na2O = 0.24; CaO = 0.51) and SiO2 (mean wt% = 63.6) in the pedogenic layers and its enrichment in the parental material (mean wt% of Na2O = 0.44; CaO = 1.3; SiO2 = 70.1) shows a good gradient of elemental mobility due to pedogenesis. Bivariate plots of the base ratios (Na2O/K2O, CaO/K2O, and MgO/K2O) vs. Al2O3 reveal independent distribution for parent material, pedogenic horizons and the incipient zone indicating the gradual addition/removal of immobile/mobile elements with varying pedogenesis. Discontinuous and segmented pattern of the geochemical parameters enables discrimination of multiple pedogenic episodes and recognition of soil welding processes in the multistorey composite paleosols. We also test the applicability of the geochemical climofunctions: the Mean Annual Precipitation (MAP) and Mean Annual Temperature (MAT); that demands more data for calibration in the Siwalik paleosols.  相似文献   
50.
Planktonic foraminiferal fossil assemblages identified from the Bolinxiala Formation in Bolin, Zanda, southwestern Tibet of China, determine its age from latest Albian to Maastrichtian. The fossil contents of the Bolinxiala Formation allow its correlation with successions across a platform-to-basin transect of the Late Cretaceous Tethyan Himalaya passive margin. The ocean anoxic event at the Cenomanian–Turonian transition (OAE2) is located at the Whiteinella archaeocretacaea biozone in Zanda, but lithologically it is characterized by grey and bioturbated limestone, implying that during the OAE2 the shallow-water environments of the Tethyan Himalayan carbonate platform remained oxic. Paleogeographic reconstruction indicates that the Upper Cretaceous Oceanic Red Beds (CORBs) in southern Tibet are restricted to the slope and basinal environments but they are entirely missing in the shelf environments. This phenomenon suggests the formation of CORBs by oxidation of Fe(II)-enriched anoxic deep ocean seawater at the chemocline that separated the oxic surface ocean from anoxic deep ocean. For depositional environments above the chemocline, no CORBs would be expected. Because of the chemocline instability across different sedimentary basins, CORBs may be significantly diachronous, consistent with the occurrence of CORBs documented from global sedimentary basins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号