首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2927篇
  免费   701篇
  国内免费   744篇
测绘学   196篇
大气科学   878篇
地球物理   997篇
地质学   1265篇
海洋学   489篇
天文学   87篇
综合类   142篇
自然地理   318篇
  2024年   19篇
  2023年   41篇
  2022年   60篇
  2021年   143篇
  2020年   145篇
  2019年   179篇
  2018年   135篇
  2017年   185篇
  2016年   166篇
  2015年   157篇
  2014年   233篇
  2013年   270篇
  2012年   182篇
  2011年   203篇
  2010年   157篇
  2009年   206篇
  2008年   211篇
  2007年   193篇
  2006年   183篇
  2005年   151篇
  2004年   151篇
  2003年   116篇
  2002年   137篇
  2001年   100篇
  2000年   90篇
  1999年   84篇
  1998年   77篇
  1997年   64篇
  1996年   83篇
  1995年   44篇
  1994年   45篇
  1993年   36篇
  1992年   25篇
  1991年   23篇
  1990年   18篇
  1989年   14篇
  1988年   12篇
  1987年   12篇
  1986年   5篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1954年   4篇
排序方式: 共有4372条查询结果,搜索用时 281 毫秒
101.
Macropores are subsurface connected void spaces caused by processes such as fracture of soils, micro‐erosion, and fauna burrows. They are common near streams (e.g. hyporheic and riparian zones) and may act as preferential flow paths between surface and groundwaters, affecting hydrologic and biogeochemical processes. We tested the hydrologic function of macropores by constructing an artificial macropore within the saturated zone of a meander bend (open macropore, ‘OM’) and later filling its upstream end (partially filled macropore, ‘PFM’). For each treatment, we injected saline tracer at an upgradient monitoring well within the meander and monitored downgradient hydraulics and tracer transport. Pressure transducers in monitoring wells indicated hydraulic gradients within the meander were 32% higher perpendicular to and 6% higher parallel to the macropore for the OM than for the PFM. Additionally, hydraulic conductivities measured via falling head tests were 29 to 550 times higher along the macropore than in nearby sediment. We used electrical conductivity probes in wells and electrical resistivity imaging to track solute transport. Transport velocities through the meander were on average 9 and 21% higher (per temporal moment analysis and observed tracer peak, respectively) for the OM than for the PFM. Furthermore, temporal moments of tracer breakthrough analysis indicated downgradient longitudinal dispersion and breakthrough tracer curve tailing were on average 234% and 182% higher for the OM, respectively. This suggests the OM enabled solute transport at overall shorter timescales than the matrix but also increased tailing. Our results demonstrate the importance of macropores to meander bend hydrology and solute transport. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
102.
103.
The dynamic response of a mechanically stabilized earth wall to the passing of a high‐speed train is modelled using the finite element method. A three‐dimensional analysis is carried out, using a specific framework that allows performing the analysis with a moderate computational effort. In the first place, a so‐called multiphase approach is used to take into account the reinforcing strips. The moving load is taken into account by performing the calculation in a mobile referential using the properties of symmetry of the train cars and a simplifying assumption of periodicity for the whole train. We also assume a steady state. A partial validation of the approach is obtained by means of a comparison with an analytical solution. The quick increase in displacements induced by the train passing when the speed comes close to the celerity of Rayleigh waves clearly appears in the results. The vertical displacements, vertical stresses in the backfill, tensile forces in the strips and the influence of the stiffness of the soil are discussed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
104.
The delineation of groundwater discharge areas based on Distributed Temperature Sensing (DTS) data of the streambed can be difficult in soft‐bedded streams where sedimentation and scouring processes constantly change the position of the fibre optic cable relative to the streambed. Deposition‐induced temperature anomalies resemble the signal of groundwater discharge while scouring will cause the cable to float in the water column and measure stream water temperatures. DTS applied in a looped layout with nine fibre optic cable rows in a 70 × 5 m section of a soft‐bedded stream made it possible to detect variability in streambed temperatures between October 2011 and January 2012. Detailed monthly streambed elevation surveys were carried out to monitor the position of the fibre optic cable relative to the streambed and to quantify the effect of sedimentation processes on streambed temperatures. Based on the simultaneous interpretation of streambed temperature and elevation data, a method is proposed to delineate potential high‐groundwater discharge areas and identify deposition‐induced temperature anomalies in soft‐bedded streams. Potential high‐discharge sites were detected using as metrics the daily minimum, maximum and mean streambed temperatures as well as the daily amplitude and standard deviation of temperatures. The identified potential high‐discharge areas were mostly located near the channel banks, also showing temporal variability because of the scouring and redistribution of streambed sediments, leading to the relocation of pool‐riffle sequences. This study also shows that sediment deposits of 0.1 m thickness already resulted in an increase in daily minimum streambed temperatures and decrease in daily amplitude and standard deviation. Scouring sites showed lower daily minimum streambed temperatures and higher daily amplitude and standard deviation compared with areas without sedimentation and scouring. As a limitation of the approach, groundwater discharge occurring at depositional and scouring areas cannot be identified by the metrics applied. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
105.
Watershed structure influences the timing, magnitude, and spatial location of water and solute entry to stream networks. In turn, stream reach transport velocities and stream network geometry (travel distances) further influence the timing of export from watersheds. Here, we examine how watershed and stream network organization can affect travel times of water from delivery to the stream network to arrival at the watershed outlet. We analysed watershed structure and network geometry and quantified the relationship between stream discharge and solute velocity across six study watersheds (11.4 to 62.8 km2) located in the Sawtooth Mountains of central Idaho, USA. Based on these analyses, we developed stream network travel time functions for each watershed. We found that watershed structure, stream network geometry, and the variable magnitude of inputs across the network can have a pronounced affect on water travel distances and velocities within a stream network. Accordingly, a sample taken at the watershed outlet is composed of water and solutes sourced from across the watershed that experienced a range of travel times in the stream network. We suggest that understanding and quantifying stream network travel time distributions are valuable for deconvolving signals observed at watershed outlets into their spatial and temporal sources, and separating terrestrial and in‐channel hydrological, biogeochemical, and ecological influences on in‐stream observations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
106.
Dense understory thickets of the native evergreen shrub Rhododendron maximum expanded initially following elimination of American chestnut by the chestnut blight, and later in response to loss of the eastern hemlock due to hemlock woolly adelgid invasion. Rhododendron thickets often blanket streams and their riparian zones, creating cool, low-light microclimates. To determine the effect of such understory thickets on summer stream temperatures, we removed riparian rhododendron understory on 300 m reaches of two southern Appalachian Mountain headwater streams, while leaving two 300 m reference reaches undisturbed. Overhead canopy was left intact in all four streams, but all streams were selected to have a significant component of dead or dying eastern hemlock in the overstory, creating time-varying canopy gaps throughout the reach. We continuously monitored temperatures upstream, within and downstream of treatment and reference reaches. Temperatures were monitored in all four streams in the summer before treatments were imposed (2014), and for two summers following treatment (2015, 2016). Temperatures varied significantly across and within streams prior to treatment and across years for the reference streams. After rhododendron removal, increases in summer stream temperatures were observed at some locations within the treatment reaches, but these increases did not persist downstream and varied by watershed, sensor, and year. Significant increases in daily maxima in treatment reaches ranged from 0.9 to 2.6°C. Overhead canopy provided enough shade to prevent rhododendron removal from increasing summer temperatures to levels deleterious to native cold-water fauna (average summer temperatures remained below 16°C), and local temperature effects were not persistent.  相似文献   
107.
River water temperature is a key physical variable controlling several chemical, biological and ecological processes. Its reliable prediction is a main issue in many environmental applications, which however is hampered by data scarcity, when using data‐demanding deterministic models, and modelling limitations, when using simpler statistical models. In this work we test a suite of models belonging to air2stream family, which are characterized by a hybrid formulation that combines a physical derivation of the key equation with a stochastic calibration of parameters. The air2stream models rely solely on air temperature and streamflow, and are of similar complexity as standard statistical models. The performances of the different versions of air2stream in predicting river water temperature are compared with those of the most common statistical models typically used in the literature. To this aim, a dataset of 38 Swiss rivers is used, which includes rivers classified into four different categories according to their hydrological characteristics: low‐land natural rivers, lake outlets, snow‐fed rivers and regulated rivers. The results of the analysis provide practical indications regarding the type of model that is most suitable to simulate river water temperature across different time scales (from daily to seasonal) and for different hydrological regimes. A model intercomparison exercise suggests that the family of air2stream hybrid models generally outperforms statistical models, while cross‐validation conducted over a 30‐year period indicates that they can be suitably adopted for long‐term analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
108.
Thanks to its simple division into agricultural and forestry land use, the Corbeira catchment (Galicia, Spain) is used as a case study to build a predictive model using hydrogeochemical signatures. Stream data acquired under recessional flow conditions over a one year period were obtained from a sampling station near the downstream end of the catchment, and using principal component analysis, it is shown that some of the analytical parameters are covariant, and some are negatively correlated. These findings support inferences about the pathways of rainfall in the catchment. Specific signatures may be associated with the dominant hydrological source, either surface runoff or subsurface waters: additionally, the dominant land use in that part of the catchment, where the flow originated, can also be predicted. The dominant runoff shows a strong covariance between suspended solids (SS) and particulate phosphorus (PP), with a clear negative correlation with pH. Dissolved organic carbon (DOC) data are associated with this covariant set when these compounds are available in the soils in question. Dissolved phosphorus, total organic nitrogen and dissolved nitrates are also associated with the same covariant set when the runoff flows through areas of extensive agricultural use. The SS ? PP covariance is less significant at lower flows. Typical base flow regimes show a significant covariance between salinity and pH, with a marked negative correlation with SS ? PP set, confirming the dominance of subsurface waters in the baseflow, as expected. Seasonally divergent DOC ? SS behaviour proves to be a useful tracer for rainfall regimes. The DOC trend shows a sinusoidal annual variation in amplitude, determined by the rainfall regime. As a result, flow from the catchment is dominated by surface water whenever there is synchronicity between the peaks of DOC and SS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
109.
This study presents a new method to measure stream cross section without having contact with water. Compared with conventional measurement methods which apply instruments such as sounding weight, ground penetration radar (GPR), used in this study, is a non‐contact measurement method. This non‐contact measurement method can reduce the risk to hydrologists when they are conducting measurements, particularly in high flow period. However, the original signals obtained by using GPR are very complex, different from studies in the past where the measured data were mostly interpreted by experts with special skill or knowledge of GPR so that the results obtained were less objective. This study employs Hilbert–Huang transform (HHT) to process GPR signals which are difficult to interpret by hydrologists. HHT is a newly developed signal processing method that can not only process the nonlinear and non‐stationary complex signals, but also maintain the physical significance of the signal itself. Using GPR with HHT, this study establishes a non‐contact stream cross‐section measurement method with the ability to measure stream cross‐sectional areas precisely and quickly. Also, in comparison with the conventional method, no significant difference in results is found to exist between the two methods, but the new method can considerably reduce risk, measurement time, and manpower. It is proven that the non‐contact method combining GPR with HHT is applicable to quickly and accurately measure stream cross section. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
110.
In 1967, the original Walker Branch Watershed (WBW) project was established to study elemental cycling and mass balances in a relatively unimpacted watershed. Over the next 50+ years, findings from additional experimental studies and long-term observations on WBW advanced understanding of catchment hydrology, biogeochemistry, and ecology and established WBW as a seminal site for catchment science. The 97.5-ha WBW is located in East Tennessee, USA, on the U.S. Department of Energy's Oak Ridge Reservation. Vegetation on the watershed is characteristic of an eastern deciduous, second-growth forest. The watershed is divided into two subcatchments: the West Fork (38.4 ha) and the East Fork (59.1 ha). Headwater streams draining these subcatchments are fed by multiple springs, and thus flow is perennial. Stream water is high in base cations due to weathering of dolomite bedrock and nutrient concentrations are low. Long-term observations of climate, hydrology, and biogeochemistry include daily (1969–2014) and 15-min (1994–2014) stream discharge and annual runoff (1969–2014); hourly, daily, and annual rainfall (1969–2012); daily climate and soil temperature (1993–2010); and weekly stream water chemistry (1989–2013). These long-term datasets are publicly available on the WBW website (https://walkerbranch.ornl.gov/long-term-data/ ). While collection of these data has ceased, related long-term measurements continue through the National Ecological Observatory Network (NEON), where WBW is the core terrestrial and aquatic site in the Appalachian and Cumberland Plateau region (NEON's Domain 7) of the United States. These long-term datasets have been and will continue to be important in evaluating the influence of climatic and environmental drivers on catchment processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号