首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2924篇
  免费   434篇
  国内免费   281篇
测绘学   87篇
大气科学   36篇
地球物理   1351篇
地质学   828篇
海洋学   345篇
天文学   18篇
综合类   95篇
自然地理   879篇
  2024年   13篇
  2023年   20篇
  2022年   47篇
  2021年   110篇
  2020年   138篇
  2019年   133篇
  2018年   114篇
  2017年   114篇
  2016年   107篇
  2015年   120篇
  2014年   123篇
  2013年   203篇
  2012年   112篇
  2011年   152篇
  2010年   118篇
  2009年   171篇
  2008年   174篇
  2007年   173篇
  2006年   196篇
  2005年   166篇
  2004年   136篇
  2003年   129篇
  2002年   112篇
  2001年   117篇
  2000年   87篇
  1999年   90篇
  1998年   71篇
  1997年   71篇
  1996年   48篇
  1995年   38篇
  1994年   49篇
  1993年   26篇
  1992年   24篇
  1991年   24篇
  1990年   13篇
  1989年   15篇
  1988年   10篇
  1987年   19篇
  1986年   9篇
  1985年   7篇
  1984年   10篇
  1983年   7篇
  1982年   7篇
  1981年   3篇
  1980年   5篇
  1979年   4篇
  1978年   1篇
  1977年   3篇
排序方式: 共有3639条查询结果,搜索用时 171 毫秒
101.
River confluences and their associated tributaries are key morphodynamic nodes that play important roles in controlling hydraulic geometry and hyporheic water exchange in fluvial networks. However, the existing knowledge regarding hyporheic water exchange associated with river confluence morphology is relatively scarce. On January 14 and 15, 2016, the general hydraulic and morphological characteristics of the confluent meander bend (CMB) between the Juehe River and the Haohe River in the southern region of Xi'an City, Shaanxi Province, China, were investigated. The patterns and magnitudes of vertical hyporheic water exchange (VHWE) were estimated based on a one‐dimensional heat steady‐state model, whereas the sediment vertical hydraulic conductivity (Kv) was calculated via in situ permeameter tests. The results demonstrated that 6 hydrodynamic zones and their extensions were observed at the CMB during the test period. These zones were likely controlled by the obtuse junction angle and low momentum flux ratio, influencing the sediment grain size distribution of the CMB. The VHWE patterns at the test site during the test period mostly showed upwelling flow dominated by regional groundwater discharging into the river. The occurrence of longitudinal downwelling and upwelling patterns along the meander bend at the CMB was likely subjected to the comprehensive influences of the local sinuosity of the meander bend and regional groundwater discharge and finally formed regional and local flow paths. Additionally, in dominated upwelling areas, the change in VHWE magnitudes was nearly consistent with that in Kv values, and higher values of both variables generally occurred in erosional zones near the thalweg paths of the CMB, which were mostly made up of sand and gravel. This was potentially caused by the erosional and depositional processes subjected to confluence morphology. Furthermore, lower Kv values observed in downwelling areas at the CMB were attributed to sediment clogging caused by local downwelling flow. The confluence morphology and sediment Kv are thus likely the driving factors that cause local variations in the VHWE of fluvial systems.  相似文献   
102.
The sequence architecture and depositional systems of the Paleogene lacustrine rift succession in the Huanghekou Sag, Bohai Bay Basin, NE China were investigated based on seismic profiles, combined with well log and core data. Four second‐order or composite sequences and seven third‐order sequences were identified. The depositional systems identified in the basin include: fan delta, braid delta, meander fluvial delta, lacustrine and sublacustrine fan. Identification of the slope break was conducted combining the interpretation of faults of each sequence and the identification of syndepositional faults, based on the subdivision of sequence stratigraphy and analysis of depositional systems. Multiple geomorphologic units were recognized in the Paleogene of the Huanghekou Sag including faults, flexures, depositional slope break belts, ditch‐valleys and sub‐uplifts in the central sag. Using genetic division principles and taking into consideration tectonic features of the Paleogene of the Huanghekou Sag, the study area was divided into the Northern Steep Slope/Fault Slope Break System, the Southern Gentle Slope Break System and T10 Tectonic Slope Break System/T10 Tectonic Belt. Responses of slope break systems to deposition–erosion are shown as: (1) basin marginal slope break is the boundary of the eroded area and provenance area; (2) ditch‐valley formed by different kinds of slope break belts is a good transport bypass for source materials; (3) shape of the slope break belt of the slope break system controls sediments types; (4) the ditch‐valley and sub‐sag of a slope break system is an unloading area for sediments; and (5) due to their different origins, association characteristics and developing patterns, the Paleogene slope break belt systems in the Huanghekou Sag show different controls on depositional systems. The Northern Fault Slope Break system controls the deposition of a fan delta‐lacustrine‐subaqueous fan, the Southern Gentle Slope Break system controls the deposition of a fluvial–deltaic–shallow lacustrine and sublacustrine fan, and the T10 Tectonic Slope Break System controls the deposition of shallow lacustrine beach bar sandbodies. The existence of a slope break system is a necessary but not a sufficient condition for studying sandbody development. The formation of effective sandbodies along the slope break depends on the reasonable coupling of effective provenance, necessary association patterns of slope break belt, adequate unloading space and creation of definite accommodation space. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
103.
Several analogue modeling studies have been conducted during the past fifteen years with the aim to discuss the effects of sedimentation and erosion on Foreland Fold and Thrust Belt, among which a few have analyzed these processes at kilometric scale (Malavieille et al., 1993; Nalpas et al., 1999; Barrier et al., 2002; Pichot and Nalpas, 2009). The influence of syn-deformation sedimentation and erosion on the structural evolution of FFTB has been clearly demonstrated. Here, we propose to go further in this approach by the study of a more complex system with a double decollement level. The natural study case is the Bolivian sub-Andean thrust and fold belt, which present all the required criteria, such as the double decollement level. A set of analogue models performed under a CT-scan have been used to test the influence of several parameters on a fold and thrust belt system, among which: (i) the spatial variation of the sediment input, (ii) the spatial variation of the erosion rate, (iii) the relative distribution of sedimentation between foreland and hinterland. These experiments led to the following observations:
  • 1. The upper decollement level acts as a decoupling level in case of increased sedimentation rate: it results in the verticalization of the shallower part (above the upper decollement level), while the deeper parts are not impacted.
  • 2. Similarly, the increase of the erosion rate involves the uplift of the deeper part (below the upper decollement level), whereas the shallower parts are not impacted.
  • 3. A high sedimentation rate in the foreland involves a fault and fold vergence reversal, followed by a back-thrusting of the shallower part.
  • 4. A high sedimentation rate in the hinterland favours thrust development toward the foreland in the shallower parts.
  相似文献   
104.
针对定量分析土壤侵蚀在各坡度等级上的空间分布研究较少的现状,该文选用通用的土壤流失预报方程,对云蒙湖流域1986—2010年间的土壤水力侵蚀状况进行了定量的估算,以探讨不同坡度上的土壤侵蚀特征,并进一步分析了土壤侵蚀变化与人类活动的关系。分析得出:土壤侵蚀强度发生在人类活动比较频繁的区域上(8~25°坡度)更为严重;2010年比1986年强度以上所占比例在15°坡度等级上相对更低,在15°坡度等级上有所增加;云蒙湖流域主要土壤侵蚀量发生在25°坡度上;2010年比1986年耕地面积减少、林地和居民用地面积增加是土壤侵蚀降低的主要因素。  相似文献   
105.
土壤侵蚀是全球性的环境问题之一,严重威胁到资源、环境和社会经济的可持续发展。应用核素示踪技术研究土壤侵蚀已成为当前该领域研究热点,它体现出了很多的优越性,并在今后研究中有着广阔的应用前景。本文介绍了210Pbex的示踪原理,概述了210Pbex在土壤侵蚀示踪研究中的存在的关键性问题及其应用,并对其研究进行了展望。  相似文献   
106.
Soil erosion threatens long-term soil fertility and food production in Q’eqchi’ communities native to the Sierra Yalijux and Sierra Sacranix mountain ranges in the central highlands of Guatemala. Environmental factors such as steep topography, erodible soils, and intense precipitation events, combined with land subdivision and reduced fallow periods as a consequence of population growth, contribute to severe erosion and strain soil resources. The preservation of the region's cloud forests hinges on enhancing production of staple crops through agricultural intensification while maintaining soil fertility through implementation of soil conservation measures.  相似文献   
107.
Abstract

Headcut erosion has been recognized as one of the main processes involved in gully development in the dry-hot valley region of southwest China. To examine the effect of initial step height on headcut erosion processes, three headcuts were constructed ranging in height from 0.75 to 1.25 m on an active bank gully head, and a series of scouring experiments were conducted under a flow discharge of 120 L min?1. The morphological evolutions of the plunge pools and soil loss volume were estimated by three-dimensional photo-reconstruction methods (3D-PR). As the step height increased, the experimental results showed that: (1) the transformed potential energy and shear stress would increase by approximately 4.89 J s?1 and 26.4 Pa on average when the step height increased 0.25 m; (2) the mean depth and width of the plunge pool exhibited obvious growth, and the morphology of the cross-section developed from approximately V-shaped to U-shaped; and (3) soil loss volume increased logarithmically, with total soil loss volumes of 0.076, 0.105 and 0.116 m3, respectively. Although the significant effects of the initial step height on headcut erosion were verified, further quantitative studies are required to quantify the mechanism of headcut erosion, especially for plunge pool erosion.  相似文献   
108.
This work restored the erosion thickness of the top surface of each Cretaceous formations penetrated by the typical well in the Hari sag, and simulated the subsidence burial history of this well with software BasinMod. It is firstly pointed out that the tectonic subsidence evolution of the Hari sag since the Cretaceous can be divided into four phases: initial subsidence phase, rapid subsidence phase,uplift and erosion phase, and stable slow subsidence phase. A detailed reconstruction of the tectonothermal evolution and hydrocarbon generation histories of typical well was undertaken using the EASY R_0% model, which is constrained by vitrinite reflectance(R_0) and homogenization temperatures of fluid inclusions. In the rapid subsidence phase, the peak period of hydrocarbon generation was reached at c.a.105.59 Ma with the increasing thermal evolution degree. A concomitant rapid increase in paleotemperatures occurred and reached a maximum geothermal gradient of about 43-45℃/km. The main hydrocarbon generation period ensued around 105.59-80.00 Ma and the greatest buried depth of the Hari sag was reached at c.a. 80.00 Ma, when the maximum paleo-temperature was over 180℃.Subsequently, the sag entered an uplift and erosion phase followed by a stable slow subsidence phase during which the temperature gradient, thermal evolution, and hydrocarbon generation decreased gradually. The hydrocarbon accumulation period was discussed based on homogenization temperatures of inclusions and it is believed that two periods of rapid hydrocarbon accumulation events occurred during the Cretaceous rapid subsidence phase. The first accumulation period observed in the Bayingebi Formation(K_1 b) occurred primarily around 105.59-103.50 Ma with temperatures of 125-150℃. The second accumulation period observed in the Suhongtu Formation(K_1 s) occurred primarily around84.00-80.00 Ma with temperatures of 120-130℃. The second is the major accumulation period, and the accumulation mainly occurred in the Late Cretaceous. The hydrocarbon accumulation process was comprehensively controlled by tectono-thermal evolution and hydrocarbon generation history. During the rapid subsidence phase, the paleo temperature and geothermal gradient increased rapidly and resulted in increasing thermal evolution extending into the peak period of hydrocarbon generation,which is the key reason for hydrocarbon filling and accumulation.  相似文献   
109.
Revised Universal Soil Loss Equation(RUSLE) model coupled with transport limited sediment delivery(TLSD) function was used to predict the longtime average annual soil loss, and to identify the critical erosion-/deposition-prone areas in a tropical mountain river basin, viz., Muthirapuzha River Basin(MRB; area=271.75 km~2), in the southern Western Ghats, India. Mean gross soil erosion in MRB is 14.36 t ha~(-1) yr~(-1), whereas mean net soil erosion(i.e., gross erosion-deposition) is only 3.60 t ha~(-1) yr~(-1)(i.e., roughly 25% of the gross erosion). Majority of the basin area(~86%) experiences only slight erosion(5 t ha~(-1) yr~(-1)), and nearly 3% of the area functions as depositional environment for the eroded sediments(e.g., the terraces of stream reaches, the gentle plains as well as the foot slopes of the plateau scarps and the terrain with concordant summits). Although mean gross soil erosion rates in the natural vegetation belts are relatively higher, compared to agriculture, settlement/built-up areas and tea plantation, the sediment transport efficiency in agricultural areas and tea plantation is significantly high,reflecting the role of human activities on accelerated soil erosion. In MRB, on a mean basis, 0.42 t of soil organic carbon(SOC) content is being eroded per hectare annually, and SOC loss from the 4th order subbasins shows considerable differences, mainly due to the spatial variability in the gross soil erosion rates among the sub-basins. The quantitative results, on soil erosion and deposition, modelled using RUSLE and TLSD, are expected to be beneficial while formulating comprehensive land management strategies for reducing the extent of soil degradation in tropical mountain river basins.  相似文献   
110.
《Sedimentology》2018,65(4):1301-1321
Aeolian dune fields evolve from protodunes and small dunes into a pattern of progressively fewer, larger and more widely spaced dunes within limits defined by boundary conditions. However, the allogenic boundary conditions that promote aeolian dune‐field development, accumulation of strata and preservation of accumulated strata are not the same. Autogenic processes, such as dune interactions, scour‐depth variation along migrating dunes and substrate cannibalization by growing dunes, result in removal of the stratigraphic record. Moreover, dune‐field events may be collapsed into major erosional bounding surfaces. The question is what stages of evolving dune fields are represented in the rock record? This case study of ca 60 m of Jurassic Entrada Sandstone on the Utah/Arizona border (USA) defines stratigraphic intervals by gross architecture of bounding surfaces and sets of cross‐strata. The interpreted intervals in stratigraphic order consist of: (i) a lower sabkha bed that transitions upward into erosional remnants of small sets representing an initial wet aeolian system; (ii) large, compound cross‐strata representing a mature dune field; (iii) isolated scour‐fill representing negatively climbing dunes that produced ca 25 m of palaeo‐topographic relief; (iv) downlapping sets that fill the landscape‐scale relief; (v) four intervals of stacked climbing sets that each represent short periods of time; and (vi) an upper sabkha bed that again transitions into small sets representing a wet system. Accumulations appear to be associated with sediment pulses, a rising water table, and filling of scoured troughs and landscape‐scale depressions. Preservation of the accumulations is selective and associated with a rising water table, burial and subsidence. The preserved record appears remarkably incomplete. Speculation about missing strata gravitates towards cannibalization of the record of early dune‐field construction, and strata removed during the formation of bounding surfaces. This local Entrada record is thought to represent a point in the spectrum of preservation styles in the rock record.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号