首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   460篇
  免费   42篇
  国内免费   39篇
测绘学   6篇
大气科学   33篇
地球物理   97篇
地质学   192篇
海洋学   63篇
天文学   13篇
综合类   10篇
自然地理   127篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   12篇
  2020年   12篇
  2019年   14篇
  2018年   11篇
  2017年   17篇
  2016年   13篇
  2015年   16篇
  2014年   22篇
  2013年   57篇
  2012年   16篇
  2011年   23篇
  2010年   13篇
  2009年   20篇
  2008年   35篇
  2007年   28篇
  2006年   18篇
  2005年   24篇
  2004年   14篇
  2003年   19篇
  2002年   19篇
  2001年   19篇
  2000年   13篇
  1999年   17篇
  1998年   17篇
  1997年   12篇
  1996年   11篇
  1995年   13篇
  1994年   2篇
  1993年   5篇
  1992年   7篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有541条查询结果,搜索用时 31 毫秒
61.
Deep convection is one of the key components of the Atlantic Meridional Overturning Circulation. The intensity of deep convection (DC) is traditionally estimated as the maximum mixed layer depth (MMLD). In this study, we developed a criterion of the minimum number of casts needed for obtaining the MMLD in the Greenland Sea with a pre-defined accuracy. The criterion depends on convection intensity.For gridded datasets, we introduce a complementary measure for the DC intensity: the area of the region with the mixed layer depth over a predefined value (800 m for the Greenland Sea, notated as S800). For a weak or a moderate DC, variations of its intensity is more clear from variations of the MMLD (cluster 1 in the MMLD - S800 parameter space). Then the MMLD can be obtained with the 25 % accuracy for at minimum 40 casts during winter. For a well developed DC (cluster 2), variations of the DC intensity are better accessed from variations of S800 and minimum 10 casts are required.In the central Greenland Sea, the number of casts is sufficient for obtaining the interannual variations of the convection intensity only since 1986. If only Argo floats are available, minimum 4 floats should simultaneously operate in the Greenland Sea gyre during winter to reach the abovementioned accuracy. Up to present, the number of floats has been insufficient during most of the winters.  相似文献   
62.
63.
The continuous increase in the emission of greenhouse gases has resulted in global warming, and substantial changes in the global climate are expected by the end of the current century. The reductions in mass, volume, area and length of glaciers on the global scale are considered as clear signals of a warmer climate. The increased rate of melting under a warmer climate has resulted in the retreating of glaciers. On the long‐term scale, greater melting of glaciers during the coming years could lead to the depletion of available water resources and influence water flows in rivers. It is also very likely that such changes have occurred in Himalayan glaciers, but might have gone unnoticed or not studied in detail. The water resources of the Himalayan region may also be highly vulnerable to such climate changes, because more than 50% of the water resources of India are located in the various tributaries of the Ganges, Indus and the Brahmaputra river system, which are highly dependent on snow and glacier runoff. In the present study, the snowmelt model SNOWMOD has been used to simulate the melt runoff from a highly glacierized small basin for the summer season. The model simulated the distribution and volume of runoff with reasonably good accuracy. Based on a 2‐year simulation, it is found that, on average, the contributions of glacier melt and rainfall in the total runoff are 87% and 13% respectively. The impact of climate change on the monthly distribution of runoff and total summer runoff has been studied with respect to plausible scenarios of temperature and rainfall, both individually and in combined scenarios. The analysis included six temperature scenarios ranging between 0·5 and 3 °C, and four rainfall scenarios (?10%, ?5%, 5%, 10%). The combined scenarios were generated using temperature and rainfall scenarios. The combined scenarios represented a combination of warmer and drier and a combination of warmer and wetter conditions in the study area. The results indicate that, for the study basin, runoff increased linearly with increase in temperature and rainfall. For a temperature rise of 2 °C, the increase in summer streamflow is computed to be about 28%. Changes in rainfall by ±10% resulted in corresponding changes in streamflow by ±3·5%. For the range of climatic scenarios considered, the changes in runoff are more sensitive to changes in temperature, compared with rainfall, which is likely due to the major contribution of melt water in runoff. Such studies are needed for proper assessment of available water resources under a changing climate in the Himalayan region. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
64.
To understand the response of the Greenland ice sheet to climate change the so-called ablation zone is of particular importance, since it accommodates the yearly net surface ice loss. In numerical models and for data analysis, the bulk aerodynamic method is often used to calculate the turbulent surface fluxes, for which the aerodynamic roughness length (z 0) is a key parameter. We present, for the first time, spatial and temporal variations of z 0 in the ablation area of the Greenland ice sheet using year-round data from three automatic weather stations and one eddy-correlation mast. The temporal variation of z 0 is found to be very high in the lower ablation area (factor 500) with, at the end of the summer melt, a maximum in spatial variation for the whole ablation area of a factor 1000. The variation in time matches the onset of the accumulation and ablation season as recovered by sonic height rangers. During winter, snow accumulation and redistribution by snow drift lead to a uniform value of z 0≈ 10−4 m throughout the ablation area. At the beginning of summer, snow melt uncovers ice hummocks and z 0 quickly increases well above 10−2 m in the lower ablation area. At the end of summer melt, hummocky ice dominates the surface with z 0 > 5  ×  10−3 m up to 60 km from the ice edge. At the same time, the area close to the equilibrium line (about 90 km from the ice edge) remains very smooth with z 0 = 10−5 m. At the beginning of winter, we observed that single snow events have the potential to lower z 0 for a very rough ice surface by a factor of 20 to 50. The total surface drag of the abundant small-scale ice hummocks apparently dominates over the less frequent large domes and deep gullies. The latter results are verified by studying the individual drag contributions of hummocks and domes with a drag partition model.  相似文献   
65.
The sediments present in some areas of the Orco Valley provide indications on climatic variations that occurred during the last 6000 years on the southern slopes of the Alps. In particular, distribution and ages of peat layers help define periods and extent of glacial fluctuation in the last 2200 years. Sampling of soils involved in periglacial processes provided a basis for development of a chronological framework of late Holocene environmental change. The data indicate a trend toward cooler climate in the second half of the Holocene. A strong relationship exists between phases of River Po flooding and expansion/retreat phases of the Swiss glaciers: major glacial advances were coeval with periods of intense flooding of the River Po, whereas the phases of glacial retreat coincided with periods of little flooding of the Po. Only in three cases do relationships between glacier activity and floods show weak correlations; two of the cases relate to the warmest periods in approximately the last 2200 years, while the third is the present period. Paleoclimatic evidence from the study region indicates the relatively warm Roman Period between about 2200 and 1900 cal yr BP appears to better represent modern conditions than does the Medieval Warm Period.  相似文献   
66.
67.
We present a field‐data rich modelling analysis to reconstruct the climatic forcing, glacier response, and runoff generation from a high‐elevation catchment in central Chile over the period 2000–2015 to provide insights into the differing contributions of debris‐covered and debris‐free glaciers under current and future changing climatic conditions. Model simulations with the physically based glacio‐hydrological model TOPKAPI‐ETH reveal a period of neutral or slightly positive mass balance between 2000 and 2010, followed by a transition to increasingly large annual mass losses, associated with a recent mega drought. Mass losses commence earlier, and are more severe, for a heavily debris‐covered glacier, most likely due to its strong dependence on snow avalanche accumulation, which has declined in recent years. Catchment runoff shows a marked decreasing trend over the study period, but with high interannual variability directly linked to winter snow accumulation, and high contribution from ice melt in dry periods and drought conditions. The study demonstrates the importance of incorporating local‐scale processes such as snow avalanche accumulation and spatially variable debris thickness, in understanding the responses of different glacier types to climate change. We highlight the increased dependency of runoff from high Andean catchments on the diminishing resource of glacier ice during dry years.  相似文献   
68.
Time-changes in the terminus positions of Patagonian grounded calving glaciers are studied. The framework for the study is a model of terminus retreat based on observations of Columbia Glacier, Alaska. The interpretation favored in this work is that rapid retreat is caused by the terminus thinning to near flotation and weakening of the ice by bottom crevasses. Both thinning and bottom crevasse formation are caused by the increase in near-terminus stretching during rapid retreat. The model is consistent with the behavior of calving Patagonian glaciers regardless of the salinity of the water body calved into. Continuity calculations on Glaciar San Rafael, Chile indicate internal voids, possibly in the form of bottom crevasses, as on Columbia Glacier.  相似文献   
69.
How many Stakes are Required to Measure the Mass Balance of a Glacier?   总被引:1,自引:0,他引:1  
Glacier mass balance is estimated for South Cascade Glacier and Maclure Glacier using a one-dimensional regression of mass balance with altitude as an alternative to the traditional approach of contouring mass balance values. One attractive feature of regression is that it can be applied to sparse data sets where contouring is not possible and can provide an objective error of the resulting estimate. Regression methods yielded mass balance values equivalent to contouring methods. The effect of the number of mass balance measurements on the final value for the glacier showed that sample sizes as small as five stakes provided reasonable estimates, although the error estimates were greater than for larger sample sizes. Different spatial patterns of measurement locations showed no appreciable influence on the final value as long as different surface altitudes were intermittently sampled over the altitude range of the glacier. Two different regression equations were examined, a quadratic, and a piecewise linear spline, and comparison of results showed little sensitivity to the type of equation. These results point to the dominant effect of the gradient of mass balance with altitude of alpine glaciers compared to transverse variations. The number of mass balance measurements required to determine the glacier balance appears to be scale invariant for small glaciers and five to ten stakes are sufficient.  相似文献   
70.
The kinematic boundary condition at the surface is utilized to arrive at an estimate of the mass-balance distribution of the ablation region of Unteraargletscher, Bernese Alps, Switzerland. This is achieved without the use of any ground measurements. The terms of the kinematic boundary condition, involving surface-altitude changes with time, surface slopes, and horizontal surface velocities, are determined using high precision aerial photogrammetry. Estimating the vertical velocity distribution along the surface poses a major problem. Different approaches to solving this problem are discussed, and the potential of one particular approach is evaluated. This approach is, in essence, based on the assumption that the variation of vertical strain rates with depth is simple. The accuracy of the resulting indirect estimate of the mass balance distribution is assessed by a comparison with results from stake measurements made at about 40 different points at the surface. Although calculated values of mass balance are found to be within a reasonable range, they differ, as a function of altitude, in a systematic fashion from stake values. This suggests that the vertical strain-rate variation with depth is too complex to be parameterized in a simple manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号