首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   822篇
  免费   309篇
  国内免费   52篇
测绘学   116篇
大气科学   52篇
地球物理   651篇
地质学   238篇
海洋学   64篇
天文学   12篇
综合类   22篇
自然地理   28篇
  2024年   9篇
  2023年   10篇
  2022年   22篇
  2021年   24篇
  2020年   40篇
  2019年   42篇
  2018年   24篇
  2017年   39篇
  2016年   34篇
  2015年   49篇
  2014年   50篇
  2013年   53篇
  2012年   46篇
  2011年   46篇
  2010年   36篇
  2009年   45篇
  2008年   61篇
  2007年   39篇
  2006年   55篇
  2005年   56篇
  2004年   33篇
  2003年   28篇
  2002年   36篇
  2001年   40篇
  2000年   24篇
  1999年   38篇
  1998年   30篇
  1997年   18篇
  1996年   23篇
  1995年   16篇
  1994年   22篇
  1993年   18篇
  1992年   14篇
  1991年   11篇
  1990年   6篇
  1989年   15篇
  1988年   12篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1982年   2篇
  1980年   3篇
  1978年   3篇
  1977年   2篇
  1954年   3篇
排序方式: 共有1183条查询结果,搜索用时 0 毫秒
41.
About half a million marine gravity measurements over a 30×30 area centered on Japan have been processed and adjusted to produce a new free-air gravity map from a 5′×5′ grid. This map seems to have a better resolution than those previously published as measured by its correlation with bathymetry. The grid was used together with a high-degree and -order spherical harmonics geopotential model to compute a detailed geoid with two methods: Stokes integral and collocation. Comparisons with other available geoidal surfaces derived either from gravity or from satellite altimetry were made especially to test the ability of this new geoid at showing the sea surface topography as mapped by the Topex/Poseidon satellite. Over 2 months (6 cycles) the dynamic topography at ascending passes in the region (2347N and 123147E) was mapped to study the variability of the Kuroshio current. Received: 15 July 1994 / Accepted: 17 February 1997  相似文献   
42.
A compilation of gravity data from the Upper Rhine Graben (URG) is presented that includes all the main data sources from its German and French parts. This data is used to show that the URG consists of, at least, two arc-shaped and asymmetric rift units that tectonically are the basic building blocks of the graben. In this sense the URG does not differ from other continental rifts, such as the African rifts. This division should replace the now classical geomorphologic division of the URG into three segments, based on their different trends. Moreover, the gravity suggests that the faults in the central and southern segments are continuous and have the same trend, appearing to respond as a single kinematic unit. Changes in the gravity field in the graben are shown to reflect not only the structure of the graben, but also the highly variable composition of the basement. In this respect, the URG is quite different from some other Tertiary continental rifts, where possible changes in the composition of the basement are mostly masked in the gravity field by the effect of the overlying low-density sediments. This characteristic is used to study the extent of some of the main basement units that underlie the graben.  相似文献   
43.
The invention of gravity-propelled interplanetary space travel (also known as “gravity-assist trajectories”) in the early 1960s broke the high-energy barrier of classical space travel based on reaction propulsion, and made possible the exploration of the entire solar system with instrumented spacecraft. In this concept, a free-fall spacecraft is launched from a launch planet P1 to a nearby planet P2 such that its gravitational field (superimposed on the gravitational field of the Sun) catapults the vehicle to another planet P3, which in turn is used to repeat the process. Thus, through a series of planetary encounters, a gravity-propelled trajectory P1-P2-P3-P4-…-PN is generated. This paper describes how the invention was conceived and how the difficult mathematical problem of computing the trajectories was solved in order to numerically investigate and use the invention in actual missions. The crucial roles played by the UCLA Computing Facility and the Departments of Mathematics and Physics are also described.  相似文献   
44.
Priabonian age is highlighted for the first time in Corsica in the Venaco Formation using the presence of specific microfauna (in particular some representatives of Turborotalia cerroazulensis lineage). This silicoclastic formation is mainly represented by coarse facies. It is composed of three members from south to north and from oldest towards youngest: member of Uboli, Cardo and Orsu. The sedimentologic analysis reveals a gravity depositional environment, involving different type of currents. Sedimentologic and chronologic characteristics make the Venaco Formation and the Annot Formation (p.p.) equivalent. Dating the Venaco Fm. brings confirmation that the green schist metamorphism of the Variscan batholith and the related deformation are from the pre-Priabonian period.  相似文献   
45.
在我国大陆开展的流动重力重复观测是监测地震前兆异常的主要技术手段之一。 对大地震前流动重力场观测资料研究结果表明, 区域性持续的重力场增加和减少与大地震发生有显著关系。 目前, 区域重力场变化监测已经成为一种常规前兆观测技术手段。 本文首先从三维倾斜台阶模型入手, 计算了理论重力异常, 并对异常进行变换, 找到了一种可以更好刻画其场源边界的方法, 并进一步应用空间相关系数法进行异常特征分析, 得到了从概率意义上估计危险区的方法。 最后, 本文尝试运用此方法对青藏高原东缘地区1998—2005年的四期流动重力测网资料进行处理和分析。 应用本文提出的异常处理技术, 可有效地圈定异常梯级带位置, 确定质源体边界形态, 并可以联合背景重力异常场等其他资料, 给出危险区发震概率的空间估计, 分析结果在年度震情会商中可以有效地对地震危险区的划定提供技术支持。  相似文献   
46.
The Orange Basin records the development of the Late Jurassic to present day volcanic-rifted passive margin of Namibia. Regional extension is recorded by a Late Jurassic to Lower Cretaceous Syn-rift Megasequence, which is separated from a Cretaceous to present day post-rift Megasequence by the Late Hauterivian (ca. 130 Ma) break-up unconformity. The Late Cretaceous Post-rift evolution of the basin is characterized by episodic gravitational collapse of the margin. Gravitational collapse is recorded as a series of shale-detached gravity slide systems, consisting of an up-dip extensional domain that is linked to a down-dip zone of contraction domain along a thin basal detachment of Turonian age. The extensional domain is characterized by basinward-dipping listric faults that sole into the basal detachment. The contractional domain consists of landward-dipping listric faults and strongly asymmetric basinward-verging thrust-related folds. Growth stratal patterns suggest that the gravitational collapse of the margin was short-lived, spanning from the Coniacian (ca. 90 Ma) to the Santonian (ca. 83 Ma). Structural restorations of the main gravity-driven system show a lack of balance between up-dip extension (24 km) and down-dip shortening (16 km). Gravity sliding in the Namibian margin is interpreted to have occurred as a series of episodic short-lived gravity sliding between the Cenomanian (ca. 100 Ma) and the Campanian (ca. 80 Ma). Gravity sliding and spreading are interpreted to be the result of episodic cratonic uplift combined with differential thermal subsidence. Sliding may have also been favoured by the presence of an efficient detachment layer in Turonian source rocks.  相似文献   
47.
In airborne gravity gradiometry, the Gravity Module Assembly is an optional gravimeter unit that is mounted on the same stabilized platform as the Full Tensor Gradiometer. Direct measurements of the gravity field are needed from this device to constrain the long wavelengths when gradient data are integrated mathematically to form high-resolution gravity fields. The Gravity Module Assembly is, however, capable of providing independent gravity data with a specification approaching that expected from a dedicated airborne gravity system. Presented here is an error analysis of data from this instrument collected alongside the Full Tensor Gradiometer during an airborne survey. By having both gradiometry and gravity datasets, comparisons of the information content in these two types of measurement are made.  相似文献   
48.
We show that the amplitude of the Global Positioning System (GPS) signals in the radio occultation (RO) experiments is an indicator of the activity of the gravity waves (GW) in the atmosphere. The amplitude of the GPS RO signals is more sensitive to the atmospheric wave structures than is the phase. Early investigations used only the phase of the GPS occultation signals for statistical investigation of the GW activity in the height interval 10–40 km on a global scale. In this study, we use the polarization equations and Hilbert transform to find the 1-D GW radio image in the atmosphere by analyzing the amplitude of the RO signal. The radio image, also called the GW portrait, consists of the phase and amplitude of the GW as functions of height. We demonstrate the potential of this method using the amplitude data from GPS/Meteorology (GPS/MET) and satellite mission Challenge Mini-satellite Payload (CHAMP) RO events. The GW activity is nonuniformly distributed with the main contribution associated with the tropopause and the secondary maximums related to the GW breaking regions. Using our method we find the vertical profiles of the horizontal wind perturbations and its vertical gradient associated with the GW influence. The estimated values of the horizontal wind perturbations are in fairly good agreement with radiosonde data. The horizontal wind perturbations v(h) are ±1 to ±5 m s with vertical gradients dv/dh ±0.5 to ±15 m s km at height 10–40 km. The height dependence of the GW vertical wavelength was inferred through the differentiation of the GW phase. Analysis of this dependence using the dispersion relationship for the GW gives the estimation of the projection of the horizontal background wind velocity on the direction of the GW propagation. For the event considered, the magnitude of this projection changes between 1.5 and 10 m s at heights of 10–40 km. We conclude that the amplitude of the GPS occultation signals contain important information about the wave processes in the atmosphere on a global scale.  相似文献   
49.
绝对重力与相对重力混合平差的基准及质量控制   总被引:5,自引:0,他引:5  
杨元喜  郭春喜  刘念  丘其宪 《测绘工程》2001,10(2):11-14,19
绝对重力与相对重力测量混合平差是综合利用各种重力测量资料确定重力网基准,提高重力网综合质量的有效途径,文中首先从重力观测的系统误差入手,讨论重力网平差的函数模型;进而根据两类重力观测信息对重力基准的贡献,分析了不同平差方法所对应的各类基准及基统计意义与可靠性;最后对重力网平差的质量控制方法进行了讨论。  相似文献   
50.
Standard least-squares collocation (LSC) assumes 2D stationarity and 3D isotropy, and relies on a covariance function to account for spatial dependence in the observed data. However, the assumption that the spatial dependence is constant throughout the region of interest may sometimes be violated. Assuming a stationary covariance structure can result in over-smoothing of, e.g., the gravity field in mountains and under-smoothing in great plains. We introduce the kernel convolution method from spatial statistics for non-stationary covariance structures, and demonstrate its advantage for dealing with non-stationarity in geodetic data. We then compared stationary and non- stationary covariance functions in 2D LSC to the empirical example of gravity anomaly interpolation near the Darling Fault, Western Australia, where the field is anisotropic and non-stationary. The results with non-stationary covariance functions are better than standard LSC in terms of formal errors and cross-validation against data not used in the interpolation, demonstrating that the use of non-stationary covariance functions can improve upon standard (stationary) LSC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号