首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   797篇
  免费   51篇
  国内免费   250篇
测绘学   10篇
大气科学   8篇
地球物理   197篇
地质学   733篇
海洋学   48篇
综合类   7篇
自然地理   95篇
  2024年   2篇
  2023年   3篇
  2022年   11篇
  2021年   10篇
  2020年   24篇
  2019年   26篇
  2018年   33篇
  2017年   30篇
  2016年   43篇
  2015年   45篇
  2014年   29篇
  2013年   98篇
  2012年   39篇
  2011年   53篇
  2010年   46篇
  2009年   64篇
  2008年   66篇
  2007年   53篇
  2006年   56篇
  2005年   56篇
  2004年   67篇
  2003年   41篇
  2002年   30篇
  2001年   28篇
  2000年   17篇
  1999年   15篇
  1998年   13篇
  1997年   14篇
  1996年   16篇
  1995年   12篇
  1994年   10篇
  1993年   9篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
  1988年   5篇
  1987年   6篇
  1986年   4篇
  1985年   1篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1974年   1篇
排序方式: 共有1098条查询结果,搜索用时 0 毫秒
991.
 Selenomethionine (SeM) is an organic toxicant that is present in seleniferous environments. No kinetic data is yet available regarding SeM reactions in coal mine environments, where selenium (Se) toxicity is a potential concern. A kinetic study was conducted on two reclaimed coal mine soils (Typic Torriorthents) from Wyoming having sandy and clayey textures. Four levels of SeM treatments (0, 50, 100 μM, and plant amendment from the mine vegetation) were reacted with the soils for 4, 7, 14, 28, 42, 56, and 84 days to characterize the kinetic behavior of overall SeM disappearance from soil solutions. Detection of SeM in soil solutions at the control level (0 μM SeM) indicated occurrence of indigenous SeM in the soils. In the plant-amended soil solutions, much greater concentrations of SeM were observed as compared with the soil-only systems. This indicated the plant material was a more potential source of SeM than the mine soils. A time-dependent loss in solution SeM concentrations was observed for both soils under 0, 50, 100 μM SeM treatments. For the soil-plant mixtures, the solution SeM concentration increased initially, reached a maximum after 14 days, and then decreased thereafter. In the plant-amended soil solutions, SeM concentrations at all time intervals were higher for the sandy as compared to the clayey soil. At 50 and 100 μM SeM treatments, the solution pH was linearly related to the percentages of SeM disappeared from the solutions; greater percentage of SeM was removed from solutions at comparatively lower pH levels, which was ≥90% at pH 7.7 for both soils. Solution SeM concentrations decreased exponentially with time following first-order kinetic reactions. Under all applications (except for the control), C 0 (SeM concentration at t=0) values for the sandy soil were greater than those determined for the clayey soil, indicating higher solution SeM availability for the former and more SeM retention by the latter at t=0. Comparison of C 0 in controls (0 μM SeM addition) suggested greater indigenous SeM in the clayey soil. For both soils, C 0 values under different treatments followed the order, (soil+100 μM)>(soil+50 μM)>(soil+0 μM). The specific reaction rate constants (K r) of SeM for both soils were similar (0.031 and 0.029 day–1 for sandy and clayey soils, respectively); low K r values indicated that SeM loss from our reclaimed coal mine soil solutions would follow rather slow kinetics. The half-life (t 0.5) of SeM varied from 15 to 55 days depending on treatment level. The knowledge obtained from this study should contribute in developing time-based Se reclamation strategies in coal mine environments. Received: 18 September 1995 · Accepted: 28 December 1995  相似文献   
992.
Situated at the foot of the Pichincha volcano, the city of Quito is frequently subjected to hydroclimatic hazards. In 1995 an 11·2 km2 watershed, located in the vicinity of the city, was equipped with eight rain gauges and two flow gauges to better understand the local rainfall/runoff transformation processes. Rainfall simulation experiments were carried out on more than 40 one‐square‐metre plots to measure infiltration point‐processes. The high density of measurement devices allowed us to identify the origin and nature of the various contributions to runoff for the different physiographic units of the watershed: urban area from an altitude of 2800 to 3200 m; farmland, pasture and forested land, and finally páramo above 3900 m. Runoff occurs mainly in the lower part of the basin and is caused by urbanization; however, the natural soils of this area can also produce Hortonian runoff, which is predominant in a few events. This contribution can be studied through rainfall simulation experiments. In the upper natural zone, the younger and more permeable soils generate less runoff on the slopes. However, almost permanently saturated contributing areas, which are located in the bottom of the quebradas, may generate flood events, the size of which depends on the extent of the area concerned. Variations in the runoff coefficients are related first to the baseflow and second to the amount of rainfall in the previous 24 h. This analysis, which underlines the complexity of a small, peri‐urban, volcanic catchment, is a necessary preliminary to runoff modelling in an area where very few experiments have been carried out on small catchments. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
993.
Environmental geochemistry plays an important role in understanding the distribution of major cations (Ca2+, Mg2+, Na+, K+) in Helwan catchment, south Cairo, Egypt. Evaluation of soil mechanical erosion rate, depletion rate, exchangeable rates of base cations and sodium adsorption ratios are essential for understanding soil degradation problems in the representative Helwan catchment. Soil erosion is a natural process. It often becomes a problem when human activity causes it to occur much faster than under natural conditions. The results of the mechanical erosion rate of soil and the exchangeable rates of base cations are 1845 and 80.3 kg ha−1 yr−1, respectively. The high intensity of the mechanical erosion rate is probably attributed to the high specific surface area of the studied type of Vertisol, intensive application of fertilizer and industrial activities. Mechanical erosion of soil, exchangeable rate of base cations and the depletion rate of base cations are almost inexhaustible sources of sodium, and all these increase the problem of sodic soils and may affect plant productivity in Helwan catchment.  相似文献   
994.
Rock fragments in the regolith are a persistent property that reflects the combined influences of geologic controls, erosion, deposition, bioturbation, and weathering. The distribution of rock fragments in regoliths of the Ouachita Mountains, Arkansas, shows that sandstone fragments are common in all layers, even if sandstone is absent in parent material. Shale and sandstone fragments are produced at the bedrock weathering front, but the shale weathers rapidly and intact fragments are rare in the solum. Sandstone is weathered from ridgetop outcrops and transported downslope. Some of these fragments are moved downward, by faunalturbation and by transport into pits associated with rotting tree stumps. Upward movement by treethrow is common, resulting in a net concentration of rocks near the surface. However, the highest fragment concentrations are in the lower regolith, indicating active production at the weathering front. The regolith is a dynamic feature, reflecting the influences of vertical and horizontal processes, of active weathering at the bedrock interface, and of surficial sediment movements. The role of trees in redistributing rock fragments suggests that significant regolith mixing occurs over time scales associated with forest vegetation communities, and that forest soils have likely been extensively mixed within Holocene and historic time. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
995.
The paper presents a review of constitutive modelling of unsaturated soils. After a brief historical perspective, a number of existing constitutive models are classified and discussed according to the type of stress variables adopted in their formulation. Afterwards, attention is given to recent developments in the proposal of coupled hydraulic-mechanical models and the possibility of casting them in a sound thermodynamical framework. Finally, a double structure model for expansive soils is described. The incorporation of microstructural considerations and its use as a platform for incorporating the influence of new variables are highlighted.  相似文献   
996.
Discrete element modelling of deep penetration in granular soils   总被引:1,自引:0,他引:1  
This paper presents a numerical study on deep penetration mechanisms in granular materials with the focus on the effect of soil–penetrometer interface friction. A two‐dimensional discrete element method has been used to carry out simulation of deep penetration tests on a granular ground that is under an amplified gravity with a K0 lateral stress boundary. The numerical results show that the deep penetration makes the soil near the penetrometer move in a complex displacement path, undergo an evident loading and unloading process, and a rotation of principal stresses as large as 180°. In addition, the penetration leads to significant changes in displacement and velocity fields as well as the magnitude and direction of stresses. In general, during the whole penetration process, the granular ground undergoes several kinds of failure mechanisms in sequence, and the soil of large deformation may reach a stress state slightly over the strength envelope obtained from conventional compression tests. Soil–penetrometer interface friction has clear effects on the actual penetration mechanisms. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
997.
我国农田土壤碳库演变研究:全球变化和国家粮食安全   总被引:99,自引:0,他引:99  
《京都议定书》已于2005年生效,我国面临着CO2减排的巨大压力。分析了我国农业土壤有机碳库及其演变研究的现状,认为当前我国农业在耕地资源严重短缺、耕地地力趋于下降的背景下面临着2个巨大挑战:提高和稳定粮食生产能力与补偿日益增加的工业CO2排放。有机碳贫乏作为我国耕地土壤的基本特点,这一方面提供了我国较大的固碳空间,另一方面也体现了我国实施固碳农业的必要性和紧迫性。目前迫切需要了解我国农业土壤在最近20年来的碳库演变态势与规模,明确我国农业土壤的固碳潜力与容量,在国家层面上实施农业固碳稳产工程,以在农业可持续发展和争取国家CO2排放的较大配额上实现双嬴。   相似文献   
998.
In order to investigate the effects of temperature, thickness of soil layer, wetting and drying cycles and soil types on geometrical structure of surface shrinkage cracks in clayey soils, special software Crack Image Analysis System (CIAS) for analyzing shrinkage crack patterns was developed. Eight groups of soil samples were prepared and subjected to drying to crack in laboratory. The number of crack segments and intersections, average crack length, width and aggregate area, crack intensity factor (CIF), and the corresponding probability density functions (PDF) of these parameters were determined by analyzing several crack patterns derived from different experimental conditions. The results show that the soil cracking behavior and the geometrical structure of crack patterns are significantly influenced by these considered factors. There is a tendency of crack length, width, aggregate area and their most probable value (MPV) related to the PDF increases with temperature increase. With thicker soil layers, the average crack length, width, aggregate area and CIF are increased, and the main distribution ranges of crack length, width and aggregate area are increased also. When the soil is subjected to multiple wetting–drying cycles, the soil surface generates more irregular and coarse cracks. The number of short and narrow crack segments increases significantly, and the CIF decreases with an increase in wetting–drying cycles. It is also observed that the extent of cracking is directly related to the soil fines fraction and its plasticity index (IP). The greatest CIF and crack width are observed in the soils with the largest fines fraction and highest IP. In addition, the ratio of numbers of crack segments to intersections ranges from 1.5 to 2, and cracking mainly takes place in three stages: main-cracks initiation stage; sub-cracks initiation stage; terminal stable stage.  相似文献   
999.
Large amounts of sediments are dredged annually from Chinese oceans. Dredged materials (DMs) possess poor geotechnical properties and are normally treated as waste. This paper presents the first large-scale engineering application of DM solidification treatment in China. The technique has been used to treat approximately 1.8?×?106?m3 of DM from Taihu Lake to produce fill soils. Portland cement was chosen as the solidification material, the amount of which is confirmed through indoor unconfined compressive strength (UCS) tests. Special solidification machines process DM at 120?m3/hours. Field-based DM solidification engineering began in September 2006. Curing specimens were examined over 28 days. Results show that both UCS and failure strain of solidified DM could meet fill soil requirements. Bearing capacity was also assessed with a cone penetrometer test. Samples were examined after 2 years (after project completion), and the mean UCS of the specimens was 237.2?kPa, which completely satisfied the engineering request. Wuxi Taihu City Science and Technology Industrial Park has now been established on top of the solidified DM storage yard. The successful engineering of such facilities results in economic and environmental benefits; thus, engineering applications of DM solidification treatment are widely promoted in China.  相似文献   
1000.
Application of nitrate fertilizers on two types of forest soils led to a marked increase in the NO emission rate indicating a large potential for NO production in these soils. The largest fluxes on the fertilized plots were up to 60 ng NO–N m–2 s–1. About 0.35% of the applied nitrogen was lost as NO within about 14 days after fertilization. The fluxes from the unfertilized forest soils were in the range 0.1 to 0.8 ng NO–N m–2 s–1 with a median value of 0.3 ng NO–N m–2 s–1. If this value, obtained during June and August to September, is representative for the growing season (150 days), it corresponds to an annual emission of 0.04 kg NO–N ha–1. This is about 30% of the value obtained for an unfertilized agricultural soil. Because of the large areas occupied by forests in Sweden the flux of NO from forest soils represents a significant contribution to the total flux of NO from soils in Sweden.Earlier observations of equilibrium concentrations for NO have been verified. These were found to range from 0.2 to 2 ppbv for an unfertilized forest soil and up to 170 ppbv for a fertilized soil. At the rural site in Sweden where these measurements were performed the ambient concentrations where found to be less than this equilibrium concentration, and consequently there was generally a net emission of NO.There are still large uncertainties about the global flux of NO from soils. Using direct measurements on three different types of ecosystems and estimates based on a qualitative discussion for the remaining land areas, a global natural source for NO of the order of 1 Tg N a–1 was obtained. If 0.35% of the total annual production of fertilizer nitrogen is lost as NO, fertilization of soils may contribute with 20% to the natural flux from soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号