首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   2篇
  国内免费   4篇
测绘学   1篇
大气科学   2篇
地球物理   33篇
地质学   42篇
海洋学   50篇
天文学   2篇
自然地理   11篇
  2021年   3篇
  2020年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   10篇
  2012年   1篇
  2011年   7篇
  2010年   8篇
  2009年   10篇
  2008年   15篇
  2007年   6篇
  2006年   5篇
  2005年   13篇
  2004年   6篇
  2003年   8篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   10篇
  1996年   4篇
  1994年   5篇
  1985年   1篇
  1984年   2篇
  1978年   1篇
排序方式: 共有141条查询结果,搜索用时 31 毫秒
41.
The Werner deconvolution technique for automatic analysis of magnetic data is a powerful tool for the interpretation of magnetic profiles. In particular, the technique is a valuable aid to the interpretation of deep crustal structures beneath the continental margin which frequently lie below the penetration of all but the most high-powered seismic reflection tools. Inverse modelling of selected simple geological structures (buried scarp, graben, half-graben) confirms that the interface model is valuable in delineating the tops of magnetic bodies, while the thin sheet model gives an indication of the depth extent of the bodies. In the case of horizontal sheets in contact (simulating oceanic spreading anomalies), the thin sheet model delineates the boundary, while the interface model gives estimates which are too shallow.

As an illustration of the value of the Werner deconvolution method in regional marine studies, the magnetic basement in the Great Australian Bight (GAB) has been mapped using a set of magnetic profiles; seismic data in the GAB is of limited use in this mapping. Interpretation of the profiles confirms earlier assessments that there is a minimum of 10 km of sediment beneath the Ceduna Terrace (Great Australian Bight Basin), 3 km beneath the Eyre Terrace (Eyre Sub-basin), 6 km in the Duntroon Embayment, 3 km in the Polda Trough, and 4 km beneath the continental rise. The most prominent basement structure in the GAB is the east-west-trending scarp which delineates the northern flank of the Eyre Sub-basin, GAB Basin, and Polda Trough. The gross linearity of this escarpment for 1000 km and the fact that it appears to mark a northern boundary to the extensional basins of the margin suggests that continental extension in the pre-Middle Jurassic took place preferentially south of an old (Precambrian) lineament in the Gawler Block. Polda Trough sediments are probably included in fault-blocks underlying the northern part of the GAB Basin. The interpretation supports the concept of northwest-southeast extension prior to Late Cretaceous breakup.  相似文献   
42.
The existence and strength of the annual KwaZulu-Natal (KZN) sardine run has long been a conundrum to fishers and scientists alike ― particularly that the sardine Sardinops sagax migrate along the narrow Transkei shelf against the powerful, warm Agulhas Current. However, examination of ship-borne acoustic Doppler current profiler (S–ADCP) data collected during two research surveys in 2005 indicated that northward-flowing coastal countercurrents exist at times between the Agulhas Bank and the KZN Bight, near Port Alfred, East London, Port St Johns and Durban. The countercurrent near Port Alfred extended as far east as the Keiskamma River, within an upwelling zone known to exist there. An ADCP mooring at a depth of 32 m off Port Alfred indicated that the countercurrent typically lasted a few days, but at times remained in the same direction for as long as 10 days. Velocities ranged between 20 and 60 cm s?1 with maximum values of ~80 cm s?1. The S–ADCP data also highlighted the existence of cyclonic flow in the Port St Johns–Waterfall Bluff coastal inset, with a northward coastal current similarly ranging in velocity between 20 and 60 cm s?1. CTD data indicated that this was associated with shelf-edge upwelling, with surface temperatures 2–4 °C cooler than the adjacent core temperature (24–26 °C) of the Agulhas Current. Vertical profiles of the S–ADCP data showed that the countercurrent, about 7 km wide, extends down the slope to at least 600 m, where it appeared to link with the deep Agulhas Undercurrent at 800 m. S–ADCP and sea surface temperature (SST) satellite data confirmed the existence of the semi-permanent, lee-trapped, cyclonic eddy off Durban, associated with a well-defined northward coastal current between Park Rynie and Balito Bay. Analysis of three months (May–July 2005) of satellite SST and ocean colour data showed the shoreward core-boundary of the Agulhas Current (24 °C isotherm) to commonly be close to the coast along the KZN south coast, as well as between the Kei and Mbhashe rivers on the Transkei shelf. The Port St Johns–Waterfall Bluff cyclonic eddy was also frequently visible in these satellite data. Transient cyclonic eddies, which spanned 150–200 km of shelf, appeared to move downstream in the shoreward boundary of the Agulhas Current at a frequency of about once a month. These seemed to be break-away Durban eddies. Data collected by ADCP moorings deployed off Port Edward in 2005 showed that these break-away eddies and the well-known Natal Pulse are associated with temporary northward countercurrents on the shelf, which can last up to six days. It is proposed that these countercurrents off Port Alfred, East London and Port St Johns assist sardine to swim northwards along the Transkei shelf against the Agulhas Current, but that their progress north of Waterfall Bluff is dependent on the arrival of a transient, southward-moving, break-away Durban cyclonic eddy, which apparently sheds every 4–6 weeks, or on the generation of a Natal Pulse. This passage control mechanism has been coined the ‘Waterfall Bluff gateway’ hypothesis. The sardine run survey in June–July 2005 was undertaken in the absence of a cyclonic eddy on the KZN south coast, i.e. when the ‘gate’ was closed.  相似文献   
43.
Conductivity-temperature-depth (CTD) observations taken in the Great Australian Bight (GAB) during ORV Franklin cruise Fr 07/94 in July 1994 indicated the presence of a dense bottom layer at the head of the GAB, which flowed along the sea floor towards the shelf-break as a gravity current The north central region of the GAB was stratified with a maximum salinity difference of between 0.4 and 0.5. The outflow was confined to the shelf and was directed in a south-easterly direction with little evidence of cross-shelf transport. The flow exhibited a well-defined bottom interface evident from the head of the GAB to near the mouth of Spencer Gulf (SG), where the surface-bottom salinity difference was about 0.3. The mean thickness of the outflow was about 15 m. An estimate of the speed of the outflow at the discharge over the shelf-break was made using the zero entrainment assumption. This yielded a speed of <16 cm s−1, which remarkably was consistent with near bottom current meter measurements (16 cm s−1) on the continental shelf edge, reported south of the Eyre Peninsula. A mass budget analysis indicated that the outflow, which probably is partially maintained by the gravity current and partly by a wind-driven circulation would exist over the period, July–December, with a peak transport of about 106 m3s−1 (1 Sverdrup) which is approximately twenty times that of the bottom outflow from the adjoining Spencer Gulf.  相似文献   
44.
Nitrogen isotope values (δ15N) of surface sediments in the German Bight of the North Sea exhibit a significant gradient from values of 5–6‰ of the open shelf sea to values above 11‰ in the German Bight. This signal has been attributed to high reactive N (Nr) loading enriched in 15N from rivers and the atmosphere. To better understand the processes that determine the intensity and spatial distribution of δ15N anomalies in surface sediments, and to explore their usefulness for reconstructions of pristine N-input from rivers, we modeled the cycling of the stable isotopes 14N and 15N in reactive nitrogen through the ecosystem of the central and southern North Sea (50.9–57.3°N, 3.4°W−9.2°E) for the year 1995. The 3D-ecosystem model ECOHAM amended with an isotope-tracking module was validated by δ15N data of surface sediments within the model domain. A typical marine value (δ15Nnitrate=5‰) was prescribed for nitrate advected into the model domain at the seaside boundaries, whereas δ15Nnitrate of river inputs were those measured bi-monthly over 1 year; δ15N values of atmospheric deposition were set to 6‰ and 7‰ for NOx and NHy, respectively. The simulated δ15N values of different nitrogen compounds in the German Bight strongly depend on the mass transfers in the ecosystem. These fluxes, summarized in a nitrogen budget for 1995, give an estimate of the impacts of hydrodynamical and hydrological boundary conditions, and internal biogeochemical transformations on the nitrogen budget of the bight.  相似文献   
45.
Synechococci are small (<1 μm) coccoid prokaryotes that play a significant ecological role in microbial food webs and are important contributors to carbon and nitrogen biogeochemical cycles. Under funding from NOAA and NASA, we developed a time series observatory to understand the seasonal variability of Synechococcus and other phytoplankton. Our goal is to understand the distribution and relative contribution of Synechococcus to the carbon cycle and how they relate to nutrients and temperature. Synechococcus in the southern Mid-Atlantic Bight exhibited a clear seasonal abundance pattern in both inshore and offshore waters—peaking in abundance (11×104 cells ml−1) during warm periods of summer. Synechococci were numerically important during periods of stratification when waters were warm and macronutrients were low. Using a simple algorithm to convert cellular volume to cellular carbon using image analysis, we estimated that Synechococcus cellular carbon ranged from 0.1 to 1.5 pg C per cell and was most significant compared to total particulate carbon in the summer peaking at ∼25% of the total carbon available. No direct correlations were found between Synechococcus abundance and nitrate, nitrite, ammonium, phosphate, and silicate. However, inshore Synechococcus abundance peaked at 104 cells ml−1 when nitrogen concentrations were lowest. Our results suggest that Synechococcus is adapted to warm temperatures and are capable of demonstrating rapid growth during summer when macronutrients are limiting. The ability of Synechococcus to take advantage of high summer temperatures, low nutrient concentrations and low light levels allows them to maintain a picoplankton community during periods of low detritus and nanophytoplankton is nutrient limited. Temperature-dependence is important in altering the size spectrum of the phytoplankton community and affects the carbon cycle on the Mid Atlantic Bight.  相似文献   
46.
Gray's Reef National Marine Sanctuary (GRNMS) is an increasingly popular site for recreational fishing and diving in the South Atlantic Bight (SAB). As a result, there has been heightened concern about potential accumulation of marine debris and its consequent effects on sanctuary resources. Field surveys were conducted at GRNMS in 2004 and 2005 to provide a spatially comprehensive characterization of benthic communities and to quantify the distribution and abundance of marine debris in relation to bottom features. The spatial distribution of debris was concentrated in the center of the sanctuary and was most frequently associated with ledges rather than other bottom types. On ledges, the presence and abundance of debris was significantly related to observed boating activity and physiographic features including ledge height, ledge area, and percent cover of benthic organisms. The results from this study will aid managers in optimizing cleanup efforts and long-term monitoring of debris accumulation patterns at GRNMS and other hard bottom areas in the SAB.  相似文献   
47.
Patchiness or spatial variability is ubiquitous in marine systems. With increasing anthropogenic impacts to coastal resources and coastal systems being disproportionately large contributors to ocean productivity, identifying the spatial scales of this patchiness, particularly in coastal waters, is of critical importance to understand coastal ecosystem dynamics. The current work focuses on fine scale structure in three coastal regions. More specifically, we utilize variogram analyses to identify sub-kilometer scales of variability in biological and physical parameters measured by an autonomous underwater vehicle (AUV) in the Mid-Atlantic Bight, Monterey Bay, and in San Luis Obispo Bay between 2001 and 2004. Critical scales of variability in density, turbidity, fluorescence, and bioluminescence are examined as a function of depth and distance offshore. Furthermore, the effects of undersampling are assessed using predictive error analysis. Results indicate the presence of scales of variability ranging from 10s to 100s of meters and provide valuable insight for sampling design and resource allocation for future studies.  相似文献   
48.
49.
Stormwater plumes in the southern California coastal ocean were detected by MODIS-Aqua satellite imagery and compared to ship-based data on surface salinity and fecal indicator bacterial (FIB) counts collected during the Bight'03 Regional Water Quality Program surveys in February–March of 2004 and 2005. MODIS imagery was processed using a combined near-infrared/shortwave-infrared (NIR-SWIR) atmospheric correction method, which substantially improved normalized water-leaving radiation (nLw) optical spectra in coastal waters with high turbidity. Plumes were detected using a minimum-distance supervised classification method based on nLw spectra averaged within the training areas, defined as circular zones of 1.5–5.0-km radii around field stations with a surface salinity of S < 32.0 (“plume”) and S > 33.0 (“ocean”). The plume optical signatures (i.e., the nLw differences between “plume” and “ocean”) were most evident during the first 2 days after the rainstorms. To assess the accuracy of plume detection, stations were classified into “plume” and “ocean” using two criteria: (1) “plume” included the stations with salinity below a certain threshold estimated from the maximum accuracy of plume detection; and (2) FIB counts in “plume” exceeded the California State Water Board standards. The salinity threshold between “plume” and “ocean” was estimated as 32.2. The total accuracy of plume detection in terms of surface salinity was not high (68% on average), seemingly because of imperfect correlation between plume salinity and ocean color. The accuracy of plume detection in terms of FIB exceedances was even lower (64% on average), resulting from low correlation between ocean color and bacterial contamination. Nevertheless, satellite imagery was shown to be a useful tool for the estimation of the extent of potentially polluted plumes, which was hardly achievable by direct sampling methods (in particular, because the grids of ship-based stations covered only small parts of the plumes detected via synoptic MODIS imagery). In most southern California coastal areas, the zones of bacterial contamination were much smaller than the areas of turbid plumes; an exception was the plume of the Tijuana River, where the zone of bacterial contamination was comparable with the zone of plume detected by ocean color.  相似文献   
50.
Carbon, nitrogen, and phosphorus flow networks, consisting of 59 compartments, were constructed for the Sylt-Rømø Bight, a large shallow sea in the German Wadden Sea. These networks were analysed using ecological network analysis. Each network depicts the standing stock of each component in the ecosystem, and the flows between them. The trophic efficiency by which material is utilised in the Bight increase from 3%, to 6% to 17% for C, N and P, respectively. The number of cycles though which these elements pass increase from 1 197 for carbon, to 414?744 and 538?800 for nitrogen and phosphorus, respectively. The Finn Cycling Index, reflecting the amount of material recycled as a fraction of the total system activity, TST, increases from 17% for carbon, to 43% for nitrogen, to 81% for phosphorus. Other system level attributes such as the Average Path Length, the Average Internal Mutual Information, Relative Ascendancy, Relative and Normalized Redundancy, show an increase from the carbon to the nitrogen to the phosphorus networks. Phosphorus is tightly cycled over longer pathways than the other two elements, and also has the longest residence time in the Bight. Postulated differences between the behaviour of energy (or carbon) and biogeochemical networks in coastal ecosystems are evident from the results obtained from ecological network analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号