首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1732篇
  免费   377篇
  国内免费   195篇
测绘学   154篇
大气科学   145篇
地球物理   656篇
地质学   668篇
海洋学   323篇
天文学   14篇
综合类   85篇
自然地理   259篇
  2024年   7篇
  2023年   22篇
  2022年   43篇
  2021年   90篇
  2020年   93篇
  2019年   101篇
  2018年   63篇
  2017年   99篇
  2016年   85篇
  2015年   82篇
  2014年   111篇
  2013年   136篇
  2012年   107篇
  2011年   126篇
  2010年   97篇
  2009年   88篇
  2008年   96篇
  2007年   101篇
  2006年   72篇
  2005年   88篇
  2004年   79篇
  2003年   67篇
  2002年   55篇
  2001年   52篇
  2000年   51篇
  1999年   37篇
  1998年   43篇
  1997年   29篇
  1996年   30篇
  1995年   33篇
  1994年   17篇
  1993年   15篇
  1992年   19篇
  1991年   9篇
  1990年   14篇
  1989年   16篇
  1988年   11篇
  1987年   8篇
  1986年   6篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有2304条查询结果,搜索用时 218 毫秒
41.
Dams are a major source of fragmentation and degradation of rivers. Although substantial research has been conducted on the environmental impacts of large structures in the United States, smaller dams have received less attention. This study evaluated the impact of two dams of moderate size, the Elwha Dams, on the downstream channel system using field data collection at river cross‐sections. The relationship of average boundary shear stress (τo) to critical shear stress (τcr) served as the basis for determining channel bed material mobility under the two‐year and ten‐year flood events. The channel had the greatest channel bed mobility at the natural cross‐section upstream from the dams, low bed mobility between the structures, and an increase in channel bed mobility in the low gradient river segment near the mouth of the river. Low bed mobility tended to be associated with a lack of channel system complexity, including reduction or loss of bars and low alluvial terraces and their associated young riparian communities. Although these run‐of‐the‐river dams do not modify streamflow greatly, the loss of sediment from the channel system has had a substantial impact on bed mobility and geomorphic and biotic complexity of the Elwha River.  相似文献   
42.
A model to simulate channel changes in ephemeral river channels and to test the effects of hydrological changes due to climate change and[sol ]or land use change was developed under the auspices of the EU funded MEDALUS programme (Mediterranean Desertification and Land Use). The model, CHANGISM (Channel Change GIS Simulation Model), is designed to simulate the effect of channel flow events and of climate conditions on morphology, sediment and vegetation, through sequences of events and conditions, over periods of up to several decades. The modelling is based on cellular automata but with calculations for water and sediment continuity. Process rules have both deterministic and stochastic elements. An important feature of the model is that it incorporates feedback elements between each event. The main aim of the model is to indicate the likely outcomes of events and combinations of conditions. It is linked to GIS for both input and output. The modelling is based on a channel reach and state is input as GIS layers of morphology (DEM), sediment and vegetation cover and state. Other initial conditions of soil moisture, groundwater level, and overall gradient are input. Parameters for processes are read from tables and can be easily changed for successive runs of the model. The bases for decisions on process specifications are discussed in this paper. Initial tests of the operation and sensitivity of the model were made on idealized reaches. The model was then tested using data from monitored sites in SE Spain. Simulations using clearwater flow worked well but initial simulations using events with sediment loads showed some tendency for excess deposition. Further tests and modifications are taking place. Overall, the model is one of the most sophisticated that simulates the interaction of flows with sediment and vegetation and the outcomes in terms of erosion, deposition, morphology, sediment cover, vegetation cover and plant survival over periods of up to 30 years for the scale of a channel reach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
43.
Channel cross‐sectional changes since construction of Livingston Dam and Lake Livingston in 1968 were studied in the lower Trinity River, Texas, to test theoretical models of channel adjustment, and to determine controls on the spatial extent of channel response. High and average flows were not significantly modified by the dam, but sediment transport is greatly reduced. The study is treated as an opportunistic experiment to examine the effects of a reduction in sediment supply when discharge regime is unchanged. Channel scour is evident for about 60 km downstream, and the general phenomena of incision, widening, coarsening of channel sediment and a decrease in channel slope are successfully predicted, in a qualitative sense, by standard models of channel response. However, there is no consistent channel response within this reach, as various qualitatively different combinations of increases, decreases or no change in width, depth, slope and roughness occur. These multiple modes of adjustment are predicted by the unstable hydraulic geometry model. Between about 60 km and the Trinity delta 175 km downstream of the dam, no morphological response to the dam is observed. Rather than a diminution of the dam's effects on fluvial processes, this is due to a fundamental change in controls of the fluvial system. The downstream end of the scour zone corresponds to the upstream extent of channel response to Holocene sea level rise. Beyond 60 km downstream, the Trinity River is characterized by extensive sediment storage and reduced conveyance capacity, so that even after dam construction sediment supply still exceeds transport capacity. The channel bed of much of this reach is near or below sea level, so that sea level rise and backwater effects from the estuary are more important controls on the fluvial system than upstream inputs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
44.
Histogram and variogram inference in the multigaussian model   总被引:1,自引:4,他引:1  
Several iterative algorithms are proposed to improve the histogram and variogram inference in the framework of the multigaussian model. The starting point is the variogram obtained after a traditional normal score transform. The subsequent step consists in simulating many sets of gaussian values with this variogram at the data locations, so that the ranking of the original values is honored. The expected gaussian transformation and the expected variogram are computed by an averaging operation over the simulated datasets. The variogram model is then updated and the procedure is repeated until convergence. Such an iterative algorithm can adapt to the case of tied data and despike the histogram. Two additional issues are also examined, referred to the modeling of the empirical transformation function and to the optimal pair weighting when computing the sample variogram.  相似文献   
45.
In modern geodesy the triaxial ellipsoid as a generalisation of the ellipsoid of revolution has a significant position in studying the figure of the Earth. Lame surfaces represent a generalisation of the triaxial ellipsoid. The following paragraphs are devoted to curvatures of the Lame surfaces.  相似文献   
46.
Abstract: The February 2004 Manawatu floods in New Zealand were the result of a naturally occurring, although unusual, storm. Up to 300 mm of rain fell on the already saturated ground of the lower North Island over two days, generating substantial and rapid runoff from catchment slopes. Rivers rose quickly, inundating unprotected farmland and properties and in places breaching stopbanks. There was widespread slope failure in the hill country of the lower North Island, affecting an area of ca. 7500 km2. Slopes under scrub, plantation forest and native bush were not as badly affected as those under pasture, where slopes typically failed by shallow translational landsliding. Flooding caused catastrophic channel change in a number of small to medium sized channel systems in the upland fringes. Whilst the occurrence of landsliding and channel changes during an extreme event such as this is natural, the intensity of both landsliding and channel erosion was exacerbated by human activity within the catchments.  相似文献   
47.
This paper explores how, and to what extent, a phase of relief-rejuvenation modifies the mode of surface erosion in an approximately 63 km2 drainage basin located at the northern border of the Swiss Alps (Luzern area). In the study area, the retreat of the Alpine glaciers at the end of the Last Glacial Maximum (LGM) caused base level to lower by approximately 80 m. The fluvial system adapted to the lowered base level by headward erosion. This is indicated by knickzones in the longitudinal stream profiles and by the continuous upstream narrowing of the width of the valley floor towards these knickzones. In the headwaters above these knickzones, processes are still to a significant extent controlled by the higher base level of the LGM. There, frequent exposure of bedrock in channels and especially on hillslopes implies that sediment flux is to a large extent limited by weathering rates. In the knickzones, however, exposure of bedrock in channels implies that sediment flux is supply-limited, and that erosion rates are controlled by stream power.The morphometric analysis reveals the existence of length scales in the topography that result from distinct geomorphic processes. Along the tributaries where the upstream sizes of the drainage basins exceed 100,000–200,000 m2, the mode of sediment transport and erosion changes from predominantly hillslope processes (i.e., landsliding, creep of regolith, rock avalanches and to some extent debris flows) to processes in channels (fluvial processes and debris flows). This length scale reflects the minimum size of the contributing area for channelized processes to take over in the geomorphic development (i.e., threshold size of drainage basin). This threshold size depends on the ratio between production rates of sediment on hillslopes, and export rates of sediment by processes in channels. Consequently, in the headwaters, erosion rates and sediment flux, and hence landscape evolution rates, are to a large extent limited by weathering processes. In contrast, in the lower portion of the drainage basin that adjusts to the lowered base-level, rates of channelized erosion and relief formation are controlled mainly by stream power. Hence, this paper shows that base-level lowering, headward erosion and establishment of knickzones separate drainage basins in two segments with different controls on rates of surface erosion, sediment flux and relief formation.  相似文献   
48.
INTRODUCTION Volcanoesaremostlyobservedinoceanicridges,hotspotsandcontinentalriftzones(Hongetal.,2003),andarerarelyobservedincontinentalinteri ors.However,sincethevolcanoeswithintheconti nentinteriorscannotbeattributedtotheplate/block marginprocess,theydr…  相似文献   
49.
This work focuses on a random function model with gamma marginal and bivariate isofactorial distributions, which has been applied in mining geostatistics for estimating recoverable reserves by disjunctive kriging. The objective is to widen its use to conditional simulation and further its application to the modeling of continuous attributes in geosciences. First, the main properties of the bivariate gamma isofactorial distributions are analyzed, with emphasis in the destructuring of the extreme values, the presence of a proportional effect (higher variability in high-valued areas), and the asymmetry in the spatial correlation of the indicator variables with respect to the median threshold. Then, we provide examples of stationary random functions with such bivariate distributions, for which the shape parameter of the marginal distribution is half an integer. These are defined as the sum of squared independent Gaussian random fields. An iterative algorithm based on the Gibbs sampler is proposed to perform the simulation conditional to a set of existing data. Such ‘multivariate chi-square’ model generalizes the well-known multigaussian model and is more flexible, since it allows defining a shape parameter which controls the asymmetry of the marginal and bivariate distributions.  相似文献   
50.
Habitat fragmentation in channel networks and riverine ecosystems is increasing globally due to the construction of barriers and river regulation. The resulting divergence from the natural state poses a threat to ecosystem integrity. Consequently, a trade‐off is required between the conservation of biodiversity in channel networks and socio‐economic factors including power generation, potable water supplies, fisheries, and tourism. Many of Scotland's rivers are regulated for hydropower generation but also support populations of Atlantic salmon (Salmo salar L.) that have high economic and conservation value. This paper investigates the use of connectivity metrics and weightings to assess the impact of river barriers (impoundments) associated with hydropower regulation on natural longitudinal channel connectivity for Atlantic salmon. We applied 2 different weighting approaches in the connectivity models that accounted for spatial variability in habitat quality for spawning and fry production and contrasted these models with a more traditional approach using wetted area. Assessments of habitat loss using the habitat quality weighted models contrasted with those using the less biologically relevant wetted area. This highlights the importance of including relevant ecological and hydrogeomorphic information in assessing regulation impacts on natural channel connectivity. Specifically, we highlight scenarios where losing a smaller area of productive habitat can have a larger impact on Atlantic salmon than losing a greater area of less suitable habitat. It is recommended that future channel connectivity assessments should attempt to include biologically relevant weightings, rather than relying on simpler metrics like wetted area which can produce misleading assessments of barrier impacts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号