全文获取类型
收费全文 | 943篇 |
免费 | 415篇 |
国内免费 | 124篇 |
专业分类
测绘学 | 109篇 |
大气科学 | 4篇 |
地球物理 | 502篇 |
地质学 | 635篇 |
海洋学 | 39篇 |
天文学 | 4篇 |
综合类 | 104篇 |
自然地理 | 85篇 |
出版年
2025年 | 11篇 |
2024年 | 42篇 |
2023年 | 37篇 |
2022年 | 40篇 |
2021年 | 39篇 |
2020年 | 49篇 |
2019年 | 61篇 |
2018年 | 59篇 |
2017年 | 52篇 |
2016年 | 56篇 |
2015年 | 63篇 |
2014年 | 38篇 |
2013年 | 59篇 |
2012年 | 67篇 |
2011年 | 56篇 |
2010年 | 47篇 |
2009年 | 64篇 |
2008年 | 52篇 |
2007年 | 64篇 |
2006年 | 53篇 |
2005年 | 36篇 |
2004年 | 53篇 |
2003年 | 57篇 |
2002年 | 36篇 |
2001年 | 43篇 |
2000年 | 39篇 |
1999年 | 37篇 |
1998年 | 24篇 |
1997年 | 23篇 |
1996年 | 22篇 |
1995年 | 20篇 |
1994年 | 18篇 |
1993年 | 15篇 |
1992年 | 11篇 |
1991年 | 2篇 |
1990年 | 6篇 |
1989年 | 7篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1986年 | 4篇 |
1985年 | 3篇 |
1984年 | 3篇 |
1983年 | 1篇 |
1979年 | 3篇 |
1978年 | 3篇 |
1954年 | 3篇 |
排序方式: 共有1482条查询结果,搜索用时 21 毫秒
161.
北京时间2017年8月8日四川省九寨沟发生Ms7.0级地震。为了提高断层滑动分布反演的可靠性,本文利用升降轨InSAR数据联合反演断层滑动分布,再根据模拟形变值二次反演,对比反演结果来探讨升降轨形变场误差和确定断层滑动分布的结果。结果表明,九寨沟升轨同震形变场的质量较好,降轨形变场受余震、震后粘弹性松弛效应影响明显,利用模拟形变值二次反演确定的断层滑动分布可靠性更高。 相似文献
162.
GPS动态测量连续周跳检验 总被引:27,自引:2,他引:27
本文针对GPS动态测量中经常出现的连续周跳,提出了一种新的连续周跳的检验方法。该方法在理论上是最优的,与Kalman滤波平行操作,能够实行处理周跳引起的偏差;而且,在偏差估计的同时,兼顾后续偏差检验,因而可利用尽可能多的观测历元信息来获取精度较高的偏差估值。实例计算表明,该方法在应用中是很有效的。 相似文献
163.
1997年11月8日西藏Mw7.5级玛尼地震是干涉雷达技术应用于地震观测以来的一次重要事件.在第一部分中,我们应用广泛使用的Okada线弹性位错模型,假设断层的各个分段滑动量均匀,反演得到断层各个分段的几何参数和均匀滑动量.本部分的反演进一步去除滑动均匀假设,并利用更能反映断层真实状态的角形元位错模型(线弹性),在第一部分反演得到断层几何的基础上,反演断层面的静态位错分布.反演结果表明,线弹性滑动分布模型能够更好地解释观测数据,进一步提高反演的数据拟合程度.最终得到了断层面上的走滑和倾滑位错分布.首次得到的断层面滑动分布显示断层面滑动在浅部(0~12 km)比较集中,地震破裂长度约170 km,最大左旋走滑位移达4.8 m;反演结果还表明局部段落存在较大倾滑位移,量值达到1.9 m,这在断层模型中是不能忽略的,它可能是断层两侧形变不对称的原因之一;反演得到的标量地震矩为2.18×1020 N·m,相当于矩震级Mw7.5,与Velasco等利用地震波形反演得到的结果一致. 相似文献
164.
ZHENG Bo-wen GONG Wen-yu WEN Shao-yan ZHANG Ying-feng SHAN Xin-jian SONG Xiao-gang LIU Yun-hua 《地震地质》2018,40(4):872-882
In this paper, we processed and analyzed the Sentinel-1A data by \"two-pass\" method and acquired the surface deformation fields of Menyuan earthquake. The results show the deformation occurred mainly in the south wall of fault, where uplift deformation is dominant. The uplift deformation is significantly larger than the subsidence and the maximum uplift of ascending and descending in the LOS is 6cm, 8cm respectively. Meanwhile, based on the Okada model, we use the ascending and descending passes data as constraints to invert jointly the fault distribution and source parameters through constructing fault model of different dip directions. The optimum fault parameters are:The dip is 43°, the strike is 128°with the mean rake of 85°. The maximum slip is about 0.27m. The inverted seismic moment M0 is 1.13×1018N·m, and the moment magnitude MW is 5.9. The SW-dipping Minyue-Damaying Fault is possibly the seismogenic fault, based on the comprehensive analysis of the focal mechanisms, aftershocks relocation results and the regional tectonic background. The focus property is dominated by thrust movement with a small amount of dextral strike-slip component. The earthquake is the result of local stress adjustment nearby the Lenglongling Fault under the background of northeastward push and growth of Tibet Plateau. 相似文献
165.
SPATIAL AND TEMPORAL DISTRIBUTION OF SLIP RATE DEFICIT ACROSS HAIYUAN-LIUPAN SHAN FAULT ZONE CONSTRAINED BY GPS DATA
下载免费PDF全文

As the northeast boundary of the Tibetan plateau, the Haiyuan-Liupan Shan fault zone has separated the intensely tectonic deformed Tibetan plateau from the stable blocks of Ordos and Alxa since Cenozoic era. It is an active fault with high seismic risk in the west of mainland China. Using geology and geodetic techniques, previous studies have obtained the long-term slip rate across the Haiyuan-Liupan Shan fault zone. However, the detailed locking result and slip rate deficit across this fault zone are scarce. After the 2008 Wenchuan MS8.0 earthquake, the tectonic stress field of Longmen Shan Fault and its vicinity was changed, which suggests that the crustal movement and potential seismic risk of Haiyuan-Liupan Shan fault zone should be investigated necessarily.
Utilizing GPS horizontal velocities observed before and after Wenchuan earthquake(1999~2007 and 2009~2014), the spatial and temporal distributions of locking and slip rate deficit across the Haiyuan-Liupan Shan fault zone are inferred. In our model, we assume that the crustal deformation is caused by block rotation, horizontal strain rate within block and locking on block-bounding faults. The inversion results suggest that the Haiyuan fault zone has a left-lateral strike-slip rate deficit, the northern section of Liupan Shan has a thrust dip-slip rate deficit, while the southern section has a normal dip-slip rate deficit. The locking depths of Maomao Shan and west section of Laohu Shan are 25km during two periods, and the maximum left-lateral slip rate deficit is 6mm/a. The locking depths of east section of Laohu Shan and Haiyuan segment are shallow, and creep slip dominates them presently, which indicates that these sections are in the postseismic relaxation process of the 1920 Haiyuan earthquake. The Liupan Shan Fault has a locking depth of 35km with a maximum dip-slip rate deficit of 2mm/a. After the Wenchuan earthquake, the high slip rate deficit across Liupan Shan Fault migrated from its middle to northern section, and the range decreased, while its southern section had a normal-slip rate deficit.
Our results show that the Maomao Shan Fault and west section of Laohu Shan Fault could accumulate strain rapidly and these sections are within the Tianzhu seismic gap. Although the Liupan Shan Fault accumulates strain slowly, a long time has been passed since last large earthquake, and it has accumulated high strain energy possibly. Therefore, the potential seismic risks of these segments are significantly high compared to other segments along the Haiyuan-Liupan Shan fault zone. 相似文献
166.
COSEISMIC DISPLACEMENT FIELD OF THE WENCHUAN EARTHQUAKE DERIVED FROM STRONG MOTION RECORDS AND APPLICATION IN SLIP INVERSION
下载免费PDF全文

The development of high-rate GNSS seismology and seismic observation methods has provided technical support for acquiring the near-field real-time displacement time series during earthquake. But in practice, the limited number of GNSS continuous stations hardly meets the requirement of near-field quasi-real-time coseismic displacement observation, while the macroseismographs could be an important complement. Compared with high-rate GNSS, macroseismograph has better sensitivity, higher resolution(100~200Hz)and larger dynamic range, and the most importantly, lower cost. However, baseline drift exists in strong-motion data, which limits its widespread use. This paper aims to prove the feasibility and reliability of strong motion data in acquiring seismic displacement sequences, as a supplement to high-rate GNSS.
In this study, we have analyzed the strong-motion data of Wenchuan MS8.0 earthquake in Longmenshan fault zone, based on the automatic scheme for empirical baseline correction proposed by Wang et al., which fits the uncorrected displacement by polynomial to obtain the fitting parameters, and then the baseline correction is completed in the velocity sequence. Through correction processing and quadratic integration, the static coseismic displacement field and displacement time series are obtained. Comparison of the displacement time series from the strong motions with the result of high-rate GPS shows a good coincidence. We have worked out the coseismic displacement field in the large area of Wenchuan earthquake using GPS data and strong motion data. The coseismic displacement fields calculated from GPS and strong motions are consistent with each other in terms of magnitude, direction and distribution patterns. High-precision coseismic deformation can provide better data constraint for fault slip inversion. To verify the influence of strong-motion data on slip distribution in Wenchuan earthquake, we used strong motion, GPS and InSAR data to estimate the stress drop, moment magnitude and coseismic slip model, and our results agreed with those of the previous studies. In addition, the inversion results of different data are different and complementary to some extent. The use of strong-motion data supplements the slip of the fault in the 180km segment and the 270~300km segment, thus making the inversion results of fault slip more comprehensive.
From this result, we can draw the following conclusions:1)Based on the robust baseline correction method, the use of strong motion data, as an important complement to high-rate GNSS, can obtain reliable surface displacement after the earthquake. 2)The strong motion data provide an effective method to study the coseismic displacement sequence, the surface rupture process and quick seismogenic parameters acquisition. 3)The combination of multiple data can significantly improve the data coverage and give play to the advantages of different data. Therefore, it is suggested to combine multiple data(GPS, strong motion, InSAR, etc.)for joint inversion to improve the stability of fault slip model. 相似文献
167.
Slope stability optimization, in the presence of a band of a weak layer between two strong layers, is accounted for in complicated geotechnical problems. Classical optimization algorithms are not suitable for solving such problems as they need a proper preliminary solution to converge to a valid result. Therefore, it is necessary to find a proper algorithm which is capable of finding the best global solution. Recently a lot of metaheuristic algorithms have been proposed which are able to evade local minima effectively. In this study four evolutionary algorithms, including well‐known and recent ones, such as genetic algorithm, differential evolution, evolutionary strategy and biogeography‐based optimization (BBO), are applied in slope stability analysis and their efficiencies are explored by three benchmark case studies. Result show BBO is the most efficient among these evolutionary algorithms and other proposed algorithms applied to this problem. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
168.
Alo Schlagenhauf Isabelle Manighetti Jacques Malavieille Stphane Dominguez 《Earth and Planetary Science Letters》2008,273(3-4):299-311
We conducted a laser-equipped analog experiment aimed at quasi-continuously monitoring the growth of a dense population of normal faults in homogeneous conditions. To further understand the way geological faults progressively gain in slip and length as they accumulate more strain, we measured with great precision the incremental slip and length changes that the analog faults sustain as they grow. These measurements show that the analog faults share common features with the natural ones. In particular, during their growth, the faults develop and maintain cumulative slip profiles that are generally triangular and asymmetric. The growth takes place through two distinct phases: an initial, short period of rapid lateral lengthening, followed by a longer phase of slip accumulation with little or no lengthening. The incremental slip is found to be highly variable in both space (along the faults) and time, resulting in variable slip rates. In particular, ‘short- and long-term’ slip rates are markedly different. We also find that slip measurements at local points on fault traces do not contain clear information on the slip increment repeat mode. Finally, while the fault growth process is highly heterogeneous when considered at the scale of a few slip events, it appears homogeneous and self-similar at longer time scales which integrate many slip increments. This is likely to be the result of a feedback between stress heterogeneities and slip development. The long-term scale homogeneity also implies that the long-term faulting process is primarily insensitive to the short-term heterogeneities that are rapidly smoothed or redistributed. We propose a new conceptual scenario of fault growth that integrates the above observations and we suggest that faults grow in a bimodal way as a result of a self-driven and self-sustaining process. 相似文献
169.
2017年8月8日四川省九寨沟县发生M_s7.0地震.本文基于Sentinel-1 SAR影像,利用InSAR技术获取了此次地震的同震形变场,反演获得同震滑动分布,计算了同震位错对余震分布和周边断层的静态库仑应力变化,并对发震构造进行了分析讨论.结果表明:①InSAR同震形变场显示,九寨沟地震造成地表形变最大量级约为20 cm(雷达视线方向),同震形变存在非对称性分布特征.②同震位错以左旋走滑为主,主要发生在4~16 km深度,最大滑动量约为77 cm,位于9 km深处.反演得到的矩震级为Mw6.46.同震错动未破裂到地表.③大部分余震发生在库仑应力增加区.此次地震增加了震中周边地区一些断裂的库仑应力,如东昆仑断裂带东段、龙日坝断裂、虎牙断裂等.④东昆仑断裂东段的未来地震危险性值得关注.⑤九寨沟地震的发震断层为树正断裂,可能是虎牙断裂的北西延伸隐伏部分,此次地震是巴颜喀拉块体南东向运动受到华南块体的强烈阻挡过程中发生的一次典型构造事件. 相似文献
170.
Evaluation of the Importance of Model Features For Cyclic Deformation Due to Dip-Slip Faulting 总被引:1,自引:0,他引:1
Steven C. Cohen 《Geophysical Journal International》1994,119(3):831-841