首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1621篇
  免费   267篇
  国内免费   677篇
测绘学   17篇
大气科学   90篇
地球物理   631篇
地质学   1457篇
海洋学   234篇
综合类   49篇
自然地理   87篇
  2024年   8篇
  2023年   36篇
  2022年   47篇
  2021年   52篇
  2020年   75篇
  2019年   101篇
  2018年   105篇
  2017年   82篇
  2016年   101篇
  2015年   105篇
  2014年   131篇
  2013年   150篇
  2012年   113篇
  2011年   134篇
  2010年   118篇
  2009年   160篇
  2008年   123篇
  2007年   115篇
  2006年   121篇
  2005年   89篇
  2004年   90篇
  2003年   59篇
  2002年   69篇
  2001年   49篇
  2000年   46篇
  1999年   36篇
  1998年   53篇
  1997年   36篇
  1996年   20篇
  1995年   16篇
  1994年   23篇
  1993年   17篇
  1992年   17篇
  1991年   15篇
  1990年   13篇
  1989年   5篇
  1988年   10篇
  1987年   4篇
  1986年   6篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1978年   5篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有2565条查询结果,搜索用时 31 毫秒
891.
《国际泥沙研究》2016,(3):220-225
The cantilever failure is one of the typical bank failures, in which the lateral caving erosion at the bottom of the bank plays an important role. When the caving erosion width is larger than a certain value, the cantilever failures such as shear, toppling and stress failures may occur. In order to understand the condition of the cantilever failure, the collapse mechanisms of the cantilever failures are studied based on the bank stability theory and flume experiment. According to the bank stability equation with the lateral erosion, the critical caving erosion width (CCEW) formulas for the shear and toppling failures of simple slope bank were derived in this paper. The formulas show that the CCEW increases as the overhanging soil thickness and soil cohesion increase, and decreases as the crack depth on the bank surface and the slope angle of the bank increase. And these formulas were tested with experimental data, which shows the predicted values are good agreement with experimental data. The paper reveals a quantitative expression on the process of the river cantilever failure.  相似文献   
892.
An envelope‐based pushover analysis procedure is presented that assumes that the seismic demand for each response parameter is controlled by a predominant system failure mode that may vary according to the ground motion. To be able to simulate the most important system failure modes, several pushover analyses need to be performed, as in a modal pushover analysis procedure, whereas the total seismic demand is determined by enveloping the results associated with each pushover analysis. The demand for the most common system failure mode resulting from the ‘first‐mode’ pushover analysis is obtained by response history analysis for the equivalent ‘modal‐based’ SDOF model, whereas demand for other failure modes is based on the ‘failure‐based’ SDOF models. This makes the envelope‐based pushover analysis procedure equivalent to the N2 method provided that it involves only ‘first‐mode’ pushover analysis and response history analysis of the corresponding ‘modal‐based’ SDOF model. It is shown that the accuracy of the approximate 16th, 50th and 84th percentile response expressed in terms of IDA curves does not decrease with the height of the building or with the intensity of ground motion. This is because the estimates of the roof displacement and the maximum storey drift due to individual ground motions were predicted with a sufficient degree of accuracy for almost all the ground motions from the analysed sets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
893.
A method of nonlinear seismic analysis for RC framed structures considering full‐range factors, including stiffness and strength degradation, geometric nonlinearity, and structural member failure, is established based on the fundamental concept of the force analogy method. The strong material nonlinearity, large geometric deformation, and internal forces redistribution due to the member failure can be depicted by the proposed local plastic mechanisms, the rotation hinges at the member ends and the slide hinges assigned to the columns, of which the measurement relationships are moment versus plastic rotation and shear force versus shear plastic deformation, respectively. They are capable of evaluating the exact response of RC structures. Because only unchanging initial stiffness matrices are used through the whole computation process, the state‐space formulation was used for solving the equations of motion. The advantages of the force analogy method, such as high efficiency and stability, are still retained. The exactness of the proposed local plastic mechanisms is verified against a group of tests data, and the application of the proposed procedure is performed to an RC framed structure to simulate the full‐range nonlinear response by increasing the excitation step by step until failure of partial structural members appear. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
894.
Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation, this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil‐footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking‐isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self‐centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd.  相似文献   
895.
Groundwater seepage can lead to the erosion and failure of streambanks and hillslopes. Two groundwater instability mechanisms include (i) tension failure due to the seepage force exceeding the soil shear strength or (ii) undercutting by seepage erosion and eventual mass failure. Previous research on these mechanisms has been limited to non‐cohesive and low cohesion soils. This study utilized a constant‐head, seepage soil box packed with more cohesive (6% and 15% clay) sandy loam soils at prescribed bulk densities (1.30 to 1.70 Mg m?3) and with a bank angle of 90° to investigate the controls on failure mechanisms due to seepage forces. A dimensionless seepage mechanism (SM) number was derived and evaluated based on the ratio of resistive cohesion forces to the driving forces leading to instability including seepage gradients with an assumed steady‐state seepage angle. Tension failures and undercutting were both observed dependent primarily on the saturated hydraulic conductivity, effective cohesion, and seepage gradient. Also, shapes of seepage undercuts for these more cohesive soils were wider and less deep compared to undercuts in sand and loamy sand soils. Direct shear tests were used to quantify the geotechnical properties of the soils packed at the various bulk densities. The SM number reasonably predicted the seepage failure mechanism (tension failure versus undercutting) based on the geotechnical properties and assumed steady‐state seepage gradients of the physical‐scale laboratory experiments, with some uncertainty due to measurement of geotechnical parameters, assumed seepage gradient direction, and the expected width of the failure block. It is hypothesized that the SM number can be used to evaluate seepage failure mechanisms when a streambank or hillslope experiences steady‐state seepage forces. When prevalent, seepage gradient forces should be considered when analyzing bank stability, and therefore should be incorporated into commonly used stability models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
896.
897.
Non-stationarity of climate drivers and soil-use strongly affects the hydrologic cycle, producing significant inter-annual and multi-decadal fluctuations of river flow regimes. Understanding the temporal trajectories of hydrologic regimes is a key issue for the management of freshwater ecosystems and the security of human water uses. Here, long-term changes in the seasonal flow regime of the Little Piney creek (US) are analyzed with the aid of a stochastic mechanistic approach that expresses analytically the streamflow distribution in terms of a few measurable hydroclimatic parameters, providing a basis for assessing the impact of climate and landscape modifications on water resources. Mean rainfall and streamflow rates exhibit a pronounced inter-annual variability across the last century, though in the absence of clear sustained drifts. Long-term modifications of streamflow regimes across different periods of 2 and 8 years are likewise significant. The stochastic model is able to reasonably reproduce the observed 2-years and 8-years regimes in the Little Piney creek, as well as the corresponding inter-annual variations of streamflow probability density. The study evidences that a flow regime shift occurred in the Little Piney creek during the last century, with erratic regimes typical of the 30s/40s that had been progressively replaced by persistent flow regimes featured by more dumped streamflow fluctuations. Causal drivers of regime shift are identified as the increase of the frequency of events (a byproduct of climate variability) and the decrease of recession rates (induced by a decrease of cultivated lands). The approach developed offers an objective basis for the analysis and prediction of the impact of climate/landscape change on water resources.  相似文献   
898.
The numerical simulation of liquefaction phenomena in fluid-saturated porous materials within a continuum-mechanical framework is the aim of this contribution. This is achieved by exploiting the Theory of Porous Media (TPM) together with thermodynamically consistent elasto-viscoplastic constitutive laws. Additionally, the Finite Element Method (FEM) besides monolithic time-stepping schemes is used for the numerical treatment of the arising coupled multi-field problem. Within an isothermal and geometrically linear framework, the focus is on fully saturated biphasic materials with incompressible and immiscible phases. Thus, one is concerned with the class of volumetrically coupled problems involving a potentially strong coupling of the solid and fluid momentum balance equations and the algebraic incompressibility constraint. Applying the suggested material model, two important liquefaction-related incidents in porous media dynamics, namely the flow liquefaction and the cyclic mobility, are addressed, and a seismic soil–structure interaction problem to reveal the aforementioned two behaviors in saturated soils is introduced.  相似文献   
899.
地震台站观测人员清理自己的观测资料对促进地震观测资料在地震预报实践中的应用具有十分重要的意义。我们对周至井十多年的地下流体数字化观测资料进行了系统的整理,从固体潮特征、降雨特征、气压效应、同震变化与震前异常等方面进行了分析,初步结果认为周至井是一口很好的地震地下流体观测井孔,只要能对其观测数据出现的各种不正常现象加以分析,就有可能对未来将要发生的中强地震做出有一定价值的预报意见。  相似文献   
900.
冻土蠕变指标试验研究   总被引:4,自引:1,他引:3  
通过不同温度、不同加载应力作用下冻结兰州黄土、黏土、砂质黏土的蠕变试验,分析了蠕变曲线、初始应变、流变起始应变与流变起始时间、破坏应变与破坏时间及相对蠕变指标.结果表明:3种土质冻土的蠕变曲线变化规律大致相同,加载过程中,应变非线性增加,且加载应力越大、温度越高,初始应变越大;流变起始时间与破坏时间都与加载应力、温度有密切关系,加载应力越大、温度越高,越先出现流变和破坏. 对于相同的土质,加载应力和温度对流变起始应变、破坏应变的影响不大;对于不同土质的初始应变、流变起始应变和破坏应变,都是黏土最大、砂质黏土次之、兰州黄土最小. 3种土质冻土的初始加载段和非稳定蠕变段所占的时间较短,但产生的应变却较大;同时,温度越高,相对流变时间越短、相对破坏时间越长,说明非稳定蠕变阶段所占的时间随温度的升高而变短、稳定蠕变阶段所占的时间随温度的升高而变长.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号