首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1558篇
  免费   254篇
  国内免费   654篇
测绘学   17篇
大气科学   90篇
地球物理   618篇
地质学   1371篇
海洋学   234篇
综合类   49篇
自然地理   87篇
  2024年   5篇
  2023年   24篇
  2022年   43篇
  2021年   41篇
  2020年   63篇
  2019年   95篇
  2018年   102篇
  2017年   75篇
  2016年   93篇
  2015年   101篇
  2014年   123篇
  2013年   147篇
  2012年   109篇
  2011年   132篇
  2010年   117篇
  2009年   159篇
  2008年   120篇
  2007年   113篇
  2006年   121篇
  2005年   89篇
  2004年   90篇
  2003年   59篇
  2002年   66篇
  2001年   49篇
  2000年   45篇
  1999年   36篇
  1998年   53篇
  1997年   36篇
  1996年   20篇
  1995年   16篇
  1994年   23篇
  1993年   16篇
  1992年   17篇
  1991年   15篇
  1990年   13篇
  1989年   5篇
  1988年   10篇
  1987年   4篇
  1986年   6篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1978年   5篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有2466条查询结果,搜索用时 31 毫秒
31.
The energy balance of a solid subject to fracture has been explored using heat and mass transfer equations with regard to the volumetric and superficial components. In the suggested model, brittle fracture of a cracked solid considered as a heterogeneous two-phase medium is described by an equation analogous to the Griffith’s criterion for propagation of a single crack. The derived equation is used, together with estimates of relative change in specific interface area, to study the respective change of free strain energy and pressure in rocks associated with failure.  相似文献   
32.
We propose a methodology, called multilevel local–global (MLLG) upscaling, for generating accurate upscaled models of permeabilities or transmissibilities for flow simulation on adapted grids in heterogeneous subsurface formations. The method generates an initial adapted grid based on the given fine-scale reservoir heterogeneity and potential flow paths. It then applies local–global (LG) upscaling for permeability or transmissibility [7], along with adaptivity, in an iterative manner. In each iteration of MLLG, the grid can be adapted where needed to reduce flow solver and upscaling errors. The adaptivity is controlled with a flow-based indicator. The iterative process is continued until consistency between the global solve on the adapted grid and the local solves is obtained. While each application of LG upscaling is also an iterative process, this inner iteration generally takes only one or two iterations to converge. Furthermore, the number of outer iterations is bounded above, and hence, the computational costs of this approach are low. We design a new flow-based weighting of transmissibility values in LG upscaling that significantly improves the accuracy of LG and MLLG over traditional local transmissibility calculations. For highly heterogeneous (e.g., channelized) systems, the integration of grid adaptivity and LG upscaling is shown to consistently provide more accurate coarse-scale models for global flow, relative to reference fine-scale results, than do existing upscaling techniques applied to uniform grids of similar densities. Another attractive property of the integration of upscaling and adaptivity is that process dependency is strongly reduced, that is, the approach computes accurate global flow results also for flows driven by boundary conditions different from the generic boundary conditions used to compute the upscaled parameters. The method is demonstrated on Cartesian cell-based anisotropic refinement (CCAR) grids, but it can be applied to other adaptation strategies for structured grids and extended to unstructured grids.  相似文献   
33.
We propose a new single-phase local upscaling method that uses spatially varying multipoint transmissibility calculations. The method is demonstrated on two-dimensional Cartesian and adaptive Cartesian grids. For each cell face in the coarse upscaled grid, we create a local fine grid region surrounding the face on which we solve two generic local flow problems. The multipoint stencils used to calculate the fluxes across coarse grid cell faces involve the six neighboring pressure values. They are required to honor the two generic flow problems. The remaining degrees of freedom are used to maximize compactness and to ensure that the flux approximation is as close as possible to being two-point. The resulting multipoint flux approximations are spatially varying (a subset of the six neighbors is adaptively chosen) and reduce to two-point expressions in cases without full-tensor anisotropy. Numerical tests show that the method significantly improves upscaling accuracy as compared to commonly used local methods and also compares favorably with a local–global upscaling method.  相似文献   
34.
运用强度参数的改变对边坡破坏面形迹影响不明显这一特点,在数值模拟过程中通过改变岩体强度参数,有效地获取潜在滑动面的位置和形态,较好地解决了滑动面搜索的难题。将该法应用于广州科学城某人工高边坡稳定性的研究,在三维数值模拟过程中,将强度参数大幅度折减,计算后获得各剖面的剪应变增量图,从这些图中可获得潜在滑动面。这与人们通常将此类边坡的中风化面作为滑动面存在较大差别。将该滑动面运用极限平衡法进行计算,计算结果显示各剖面的安全系数基本都大于1.2,边坡稳定但仍需要加固处理,与三维数值模拟结果相一致。由此认为用这种分析法确定出的潜在滑动面合理、计算结果可靠,可作为搜索边坡潜在滑动面并计算安全系数的方法之一。  相似文献   
35.
The elastic properties of a physical model representing a damaged rock matrix were studied using a square lattice deformed under tensile stress. The elastic modulusM of such a system varies in agreement with percolation theory as|x–x c | f , wherex is the damage parameter andx c the threshold value of the damage parameter,f3.6. Atxx c the scale dependence ofM can be expressed asML –f/v , whereL is the size of the sample andv the correlation exponent in percolation theory.The experimental results are of interest in assessing elastic properties in earthquake focal zones and fault zones in general.  相似文献   
36.
Ice and snow have often helped physicists understand the world. On the contrary it has taken them a very long time to understand the flow of the glaciers. Naturalists only began to take an interest in glaciers at the beginning of the 19th century during the last phase of glacier advances. When the glacier flow from the upslope direction became obvious, it was then necessary to understand how it flowed. It was only in 1840, the year of the Antarctica ice sheet discovery by Dumont d'Urville, that two books laid the basis for the future field of glaciology: one by Agassiz on the ice age and glaciers, the other one by canon Rendu on glacier theory. During the 19th century, ice flow theories, adopted by most of the leading scientists, were based on melting/refreezing processes. Even though the word ‘fluid’ was first used in 1773 to describe ice, more the 130 years would have to go by before the laws of fluid mechanics were applied to ice. Even now, the parameter of Glen's law, which is used by glaciologists to model ice deformation, can take a very wide range of values, so that no unique ice flow law has yet been defined. To cite this article: F. Rémy, L. Testut, C. R. Geoscience 338 (2006).  相似文献   
37.
The failure of a lava dam 165,000 yr ago produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 m high, and geochemical evidence linked this structure to outburst-flood deposits that occurred for 32 km downstream. Using the Hyaloclastite outburst-flood deposits as paleostage indicators, we used dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. Failure of the Hyaloclastite Dam released a maximum 11 × 109 m3 of water in 31 h. Peak discharges, estimated from uncertainty in channel geometry, dam height, and hydraulic characteristics, ranged from 2.3 to 5.3 × 105 m3 s−1 for the Hyaloclastite outburst flood. This discharge is an order of magnitude greater than the largest known discharge on the Colorado River (1.4 × 104 m3 s−1) and the largest peak discharge resulting from failure of a constructed dam in the USA (6.5 × 104 m3 s−1). Moreover, the Hyaloclastite outburst flood is the oldest documented Quaternary flood and one of the largest to have occurred in the continental USA. The peak discharge for this flood ranks in the top 30 floods (>105 m3 s−1) known worldwide and in the top ten largest floods in North America.  相似文献   
38.
On large, intensively engineered rivers like the Lower Missouri, the template of the physical habitat is determined by the nearly independent interaction of channel form and flow regime. We evaluated the interaction between flow and form by modeling four combinations of modern and historical channel form and modern and historical flow regimes. The analysis used shallow, slow water (shallow-water habitat, SWH, defined as depths between 0 and 1.5 m, and current velocities between 0 and 0.75 m/s) as an indicator of habitat that has been lost on many intensively engineered rivers and one that is thought to be especially important in rearing of young fishes. Two-dimensional hydrodynamic models for modern and historical channels of the Lower Missouri River at Hermann, Missouri, indicate substantial differences between the two channels in total availability and spatial characteristics of SWH. In the modern channel, SWH is maximized at extremely low flows and in overbank flows, whereas the historical channel had substantially more SWH at all discharges and SWH increased with increasing discharge. The historical channel form produced 3–7 times the SWH area of the modern channel regardless of flow regime. The effect of flow regime is evident in increased within-year SWH variability with the natural flow regime, including significant seasonal peaks of SWH associated with spring flooding. Comparison with other reaches along the Lower Missouri River indicates that a) channel form is the dominant control of the availability of habitat even in reaches where the hydrograph is more intensively altered, and b) rehabilitation projects that move toward the historical condition can be successful in increasing topographic diversity and thereby decreasing sensitivity of the availability of habitat to flow regime. The relative efficacy of managing flow and form in creating SWH is useful information toward achieving socially acceptable rehabilitation of the ecosystem in large river systems.  相似文献   
39.
Several unfavorable environmental and engineering geologic conditions exist in Fargo, North Dakota. Dominantly, the behavior of smectitic clays within the proglacial Lake Agassiz sediments of the Sherack and Brenna Formations creates subsoil instability beneath engineered structures in the Fargo area and slope instability within cutbank meanders of the Red River of the North. Unfavorable engineering geologic conditions encountered include: the elastic deformation of clayey glaciolacustrine soils, shrink-swell properties, inadequate bearing capacities, and mass movements. These conditions are responsible for structural failures including the Fargo Grain Elevator in 1955 and the Northern Pacific railroad grade. Bank failures along the Red River are common due to the inherent instability of Brenna Formation smectitic clays which are subject to plastic deformation in the subsurface, with resultant block failure of overlying Sherack Formation. Recent alluvial sediments due to typical fluvial action and the continued seasonal saturation of cutbank meanders within the floodplain also add to soil instability.  相似文献   
40.
耒宜高速公路路堑边坡变形破坏特征及其综合治理   总被引:2,自引:2,他引:2  
耒宜高速公路修建于山岭重丘区 ,沿线地形、地质条件差异较大 ,路堑开挖边坡类型较多 ,特征不一。本文介绍了路堑边坡的主要特征、边坡失稳的主要原因及治理对策。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号