首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   40篇
  国内免费   63篇
测绘学   2篇
大气科学   14篇
地球物理   244篇
地质学   188篇
海洋学   10篇
天文学   10篇
综合类   6篇
自然地理   33篇
  2024年   2篇
  2023年   7篇
  2022年   5篇
  2021年   13篇
  2020年   10篇
  2019年   12篇
  2018年   8篇
  2017年   9篇
  2016年   7篇
  2015年   8篇
  2014年   12篇
  2013年   8篇
  2012年   8篇
  2011年   13篇
  2010年   11篇
  2009年   31篇
  2008年   54篇
  2007年   24篇
  2006年   23篇
  2005年   27篇
  2004年   25篇
  2003年   17篇
  2002年   14篇
  2001年   14篇
  2000年   18篇
  1999年   37篇
  1998年   17篇
  1997年   13篇
  1996年   13篇
  1995年   12篇
  1994年   8篇
  1993年   9篇
  1992年   5篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1983年   2篇
  1977年   1篇
排序方式: 共有507条查询结果,搜索用时 17 毫秒
461.
火山喷发和太阳活动对我国温度影响的研究   总被引:3,自引:0,他引:3  
利用特征向量分析、时序叠加分析和谱分析相结合的方法,给出了近50年来我国地面气温场中较为清晰的火山喷发和太阳活动信号。强烈的火山喷发导致全国大部分地区降温,降温最明显的时段是喷发1年多以后,并能持续约半年。除这个主信号以外,青藏高原、东南沿海和东北地区都可能出现较为复杂的温度变化。温度变化与太阳活动之间的联系更多地反映在二者的振荡关系上。  相似文献   
462.
火山活动对气候影响的数值模拟研究   总被引:10,自引:0,他引:10       下载免费PDF全文
文章系统地总结了火山活动对气候影响的数值模拟研究,主要结论如下:近百年至千年的气候变化和火山活动关系密切,强火山喷发可造成平流层4℃以上的增温和地表年、月平均温度约0.4℃、1℃的下降。地表温度下降的时空分布受许多因素的影响,如火山喷发特征(包括喷发位置、季节、强度等);海陆分布;火山气溶胶的光学特性;及其由直接辐射强迫引起的经向潜热输送的变化等等。同时还回顾了1991年皮纳图博喷发的有关研究及其对全球气候的可能影响的数值模拟工作。  相似文献   
463.
阐述了龙岗火山的地质构造及历史喷发特点,重点分析了龙岗火山区的现今地震活动性及地壳变形特点。结果表明,龙岗火山区现今地震活动性在不断增强,震源深度逐渐变浅;地壳形变有明显变化,火山活动趋于加强,未来潜在喷发的危险性不容忽视。  相似文献   
464.
 The Pu'u 'Ō'ō-Kūpaianaha eruption on the east rift zone of Kīlauea began in January 1983. The first 9 years of the eruption were divided between the Pu'u 'Ō'ō (1983–1986) and Kūpaianaha (1986–1992) vents, each characterized by regular, predictable patterns of activity that endured for years. In 1990 a series of pauses in the activity disturbed the equilibrium of the eruption, and in 1991, the output from Kūpaianaha steadily declined and a short-lived fissure eruption broke out between Kūpaianaha and Pu'u 'Ō'ō. In February 1992 the Kūpaianaha vent died, and, 10 days later, eruptive episode 50 began as a fissure opened on the uprift flank of the Pu'u 'Ō'ō cone. For the next year, the eruption was marked by instability as more vents opened on the flank of the cone and the activity was repeatedly interrupted by brief pauses in magma supply to the vents. Episodes 50–53 constructed a lava shield 60 m high and 1.3 km in diameter against the steep slope of the Pu'u 'Ō'ō cone. By 1993 the shield was pockmarked by collapse pits as vents and lava tubes downcut as much as 29 m through the thick deposit of scoria and spatter that veneered the cone. As the vents progressively lowered, the level of the Pu'u 'Ō'ō pond also dropped, demonstrating the hydraulic connection between the two. The downcutting helped to undermine the prominent Pu'u 'Ō'ō cone, which has diminished in size both by collapse, as a large pit crater formed over the conduit, and by burial of its flanks. Intervals of eruptive instability, such as that of 1991–1993, accelerate lateral expansion of the subaerial flow field both by producing widely spaced vents and by promoting surface flow activity as lava tubes collapse and become blocked during pauses. Received: 1 July 1997 / Accepted: 23 October 1997  相似文献   
465.
The 1934–1935 Showa Iwo-jima eruption started with a silicic lava extrusion onto the floor of the submarine Kikai caldera and ceased with the emergence of a lava dome. The central part of the emergent dome consists of lower microcrystalline rhyolite, grading upward into finely vesicular lava, overlain by coarsely vesicular lava with pumice breccia at the top. The lava surface is folded, and folds become tighter toward the marginal part of the dome. The dome margin is characterized by two zones: a fracture zone and a breccia zone. The fracture zone is composed of alternating layers of massive lava and welded oxidized breccia. The breccia zone is the outermost part of the dome, and consists of glassy breccia interpreted to be hyaloclastite. The lava dome contains lava with two slightly different chemical compositions; the marginal part being more dacitic and the central part more rhyolitic. The fold geometry and chemical compositions indicate that the marginal dacite had a slightly higher temperature, lower viscosity, and lower yield stress than the central rhyolite. The high-temperature dacite lava began to effuse in the earlier stage from the central crater. The front of the dome came in contact with seawater and formed hyaloclastite. During the later stage, low-temperature rhyolite lava effused subaerially. As lava was injected into the growing dome, the fracture zone was produced by successive fracturing, ramping, and brecciation of the moving dome front. In the marginal part, hyaloclastite was ramped above the sea surface by progressive increments of the new lava. The central part was folded, forming pumice breccia and wrinkles. Subaerial emplacement of lava was the dominant process during the growth of the Showa Iwo-jima dome.Editorial Responsibility J. McPhie  相似文献   
466.
During the 1944 eruption of Vesuvius different types of xenoliths were ejected. They represent fragments of the walls of a low volume (<0.5 km3) shallow (3–4 km depth) magma chamber. The study of these xenoliths enables us to estimate the amount of contamination occurring at the boundary of a high-T alkaline magma chamber hosted in carbonate rocks. The process of contamination of the magma by carbonates can be modelled, using isotopic and chemical data, as a mixing between magma and marbles. Mass exchanges occur at the boundary between the crystallizing magma and marble wall rocks, where endoskarn forms. The contamination of the solidification front of the chamber is very limited. The solidification front and the skarn shell effectively isolate the interior of the magma chamber from new inputs of contaminants from the carbonate wall rocks. Therefore, the main volume of magma, hosted in the magma chamber, did not undergo any significant mass exchange with the wall rocks.  相似文献   
467.
The 26.5 ka Oruanui eruption, from Taupo volcano in the central North Island of New Zealand, is the largest known ‘wet’ eruption, generating 430 km3 of fall deposits, 320 km3 of pyroclastic density–current (PDC) deposits (mostly ignimbrite) and 420 km3 of primary intracaldera material, equivalent to 530 km3 of magma. Erupted magma is >99% rhyolite and <1% relatively mafic compositions (52.3–63.3% SiO2). The latter vary in abundance at different stratigraphic levels from 0.1 to 4 wt%, defining three ‘spikes’ that are used to correlate fall and coeval PDC activity. The eruption is divided into 10 phases on the basis of nine mappable fall units and a tenth, poorly preserved but volumetrically dominant fall unit. Fall units 1–9 individually range from 0.8 to 85 km3 and unit 10, by subtraction, is 265 km3; all fall deposits are of wide (plinian) to extremely wide dispersal. Fall deposits show a wide range of depositional states, from dry to water saturated, reflecting varied pyroclast:water ratios. Multiple bedding and normal grading in the fall deposits show the first third of the eruption was very spasmodic; short-lived but intense bursts of activity were separated by time breaks from zero up to several weeks to months. PDC activity occurred throughout the eruption. Both dilute and concentrated currents are inferred to have been present from deposit characteristics, with the latter being volumetrically dominant (>90%). PDC deposits range from mm- to cm-thick ultra-thin veneers enclosed within fall material to >200 m-thick ignimbrite in proximal areas. The farthest travelled (90 km), most energetic PDCs (velocities >100 m s−1) occurred during phase 8, but the most voluminous PDC deposits were emplaced during phase 10. Grain size variations in the PDC deposits are complex, with changes seen vertically in thick, proximal accumulations being greater than those seen laterally from near-source to most-distal deposits. Modern Lake Taupo partly infills the caldera generated during this eruption; a 140 km2 structural collapse area is concealed beneath the lake, while the lake outline reflects coeval peripheral and volcano–tectonic collapse. Early eruption phases saw shifting vent positions; development of the caldera to its maximum extent (indicated by lithic lag breccias) occurred during phase 10. The Oruanui eruption shows many unusual features; its episodic nature, wide range of depositional conditions in fall deposits of very wide dispersal, and complex interplay of fall and PDC activity.  相似文献   
468.
Peperites are special kinds of volcaniclastic materials generated by mingling of magma and unconsolidated sediments.They directly demonstrate the contemporaneity of volcanism and sedimentation,and hence they can be used to constrain the local paleoenvironments during volcanic eruptions.We identified peperites in the lower sequence of the northwest outcrops(Inggan-Kalpin area)of Permian Tarim large igneous province(TLIP),Northwest China.In Inggan,blocky peperites were observed at the base of lava flows generated in the second eruption phase.This kind of peperites is generated by quenching of magma in a brittle fragmentation mechanism.While in Kalpin,both the second and the fourth eruption phases preserved peperites in the base of lava flows.Not only blocky but also fluidal peperites can be observed in Kalpin.The fluidal peperites were generated in vapor films,which insulated the magmas from cold sediments and avoided direct thermal shock,and therefore kept the fluidal forms of magma.All of these peperites are hosted by submarine carbonates.In lava sequences generated in the same eruption phases but located in Kaipaizileike,~15 km east to Inggan,terrestrial flood basalts developed while peperites are absent,implying a paleoenvironmental transition between Kaipaizileike and Inggan-Kalpin area.Gathering information from observed peperites,TLIP lava flows,and the Lower Permian sedimentary strata,we precisely constrained the spatial distribution and temporal evolution of sedimentary facies of the early stage of TLIP.As a result,two marine transgressions were identified.The first transgression occurred contemporaneous with the second eruption phase.The transition from submarine to subaerial is located between Kaipaizileike and Inggan.The second transgression occurred contemporaneous with the forth eruption phase,and the transition from submarine to subaerial occurred between Inggan and Kalpin.  相似文献   
469.
Improved prediction and tracking of volcanic ash clouds   总被引:2,自引:1,他引:2  
During the past 30 years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality.  相似文献   
470.
通过581.64km的路线地质调查和对20.16km的实测剖面的研究,将辽西阜新地区义县组自下而上划分为喷发旋回Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ;每个喷发旋回的下部为火山碎屑岩组成的爆发相、中上部为熔岩组成的溢流相;熔岩类型主要是玄武岩、玄武安山岩、安山岩及部分英安岩、流纹岩、珍珠岩、黑曜岩、粗安岩;各喷发旋回内部及不同喷发旋回中,具有熔岩的酸性或碱性程度向上逐渐增强的总体变化规律。义县组在紫都台—七家子地区较老河土—十家子、后新秋—苇子沟地区的火山碎屑岩的总厚度偏大,而玄武岩的发育厚度偏小,且老河土—十家子地区缺乏喷发旋回Ⅴ等,空间分布有差异性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号