全文获取类型
收费全文 | 308篇 |
免费 | 41篇 |
国内免费 | 107篇 |
专业分类
测绘学 | 3篇 |
大气科学 | 1篇 |
地球物理 | 32篇 |
地质学 | 366篇 |
海洋学 | 36篇 |
天文学 | 2篇 |
综合类 | 10篇 |
自然地理 | 6篇 |
出版年
2024年 | 1篇 |
2023年 | 7篇 |
2022年 | 11篇 |
2021年 | 13篇 |
2020年 | 8篇 |
2019年 | 10篇 |
2018年 | 15篇 |
2017年 | 18篇 |
2016年 | 12篇 |
2015年 | 12篇 |
2014年 | 21篇 |
2013年 | 22篇 |
2012年 | 30篇 |
2011年 | 20篇 |
2010年 | 21篇 |
2009年 | 25篇 |
2008年 | 28篇 |
2007年 | 13篇 |
2006年 | 25篇 |
2005年 | 20篇 |
2004年 | 9篇 |
2003年 | 11篇 |
2002年 | 18篇 |
2001年 | 15篇 |
2000年 | 11篇 |
1999年 | 12篇 |
1998年 | 11篇 |
1997年 | 9篇 |
1996年 | 2篇 |
1995年 | 5篇 |
1994年 | 4篇 |
1993年 | 7篇 |
1992年 | 3篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1987年 | 3篇 |
1986年 | 1篇 |
排序方式: 共有456条查询结果,搜索用时 15 毫秒
441.
The Wajilitag igneous complex is part of the early Permian Tarim large igneous province in NW China, and is composed of a layered mafic–ultramafic intrusion and associated syenitic plutons. In order to better constrain its origin, and the conditions of associated Fe–Ti oxide mineralization, we carried out an integrated study of mineralogical, geochemical and Sr–Nd–Hf isotopic analyses on selected samples. The Wajilitag igneous rocks have an OIB-like compositional affinity, similar to the coeval mafic dykes in the Bachu region. The layered intrusion consists of olivine clinopyroxenite, coarse-grained clinopyroxenite, fine-grained clinopyroxenite and gabbro from the base upwards. Fe–Ti oxide ores are mainly hosted in fine-grained clinopyroxenite. Forsterite contents in olivines from the olivine clinopyroxenite range from 71 to 76 mol%, indicating crystallization from an evolved magma. Reconstructed composition of the parental magma of the layered intrusion is Fe–Ti-rich, similar to that of the Bachu mafic dykes. Syenite and quartz syenite plutons have εNd(t) values ranging from +1.4 to +2.9, identical to that for the layered intrusion. They may have formed by differentiation of underplated magmas at depth and subsequent fractional crystallization. Magnetites enclosed in olivines and clinopyroxenes have Cr2O3 contents higher than those interstitial to silicates in the layered intrusion. This suggests that the Cr-rich magnetite is an early crystallized phase, whereas interstitial magnetite may have accumulated from evolved Fe–Ti-rich melts that percolated through a crystal mush. Low V content in Cr-poor magnetite (<6600 ppm) is consistent with an estimate of oxygen fugacity of FMQ + 1.1 to FMQ + 3.5. We propose that accumulation of Fe–Ti oxides during the late stage of magmatic differentiation may have followed crystallization of Fe–Ti-melt under high fO2 and a volatile-rich condition. 相似文献
442.
There are two types of temporally and spatially associated intrusions within the Emeishan large igneous province (LIP); namely, small ultramafic subvolcanic sills that host magmatic Cu-Ni-Platinum Group Element (PGE)-bearing sulfide deposits and large mafic layered intrusions that host giant Ti-V magnetite deposits in the Panxi region. However, except for their coeval ages, the genetic relations between the ore-bearing intrusions and extrusive rocks are poorly understood. Phase equilibria analysis (Q-Pl-Ol-Opx-Cpx system) has been carried out to elucidate whether ore-bearing Panzhihua, Xinjie and Limahe intrusions are co-magmatic with the picrites and flood basalts (including high-Ti, low-Ti and alkali basalts), respectively. In this system, the parental magma can be classified as silica-undersaturated olivine basalt and silica-saturated tholeiite. The equivalents of the parental magma of the Xinjie and Limahe peridotites and picrites and low-Ti basalts are silica-undersaturated, whereas the Limahe gabbro-diorites and high-Ti basalts are silica-saturated. In contrast, the Panzhihua intrusion appears to be alkali character. Phase equilibria relations clearly show that the magmas that formed the Panzhihua intrusion and high-Ti basalts cannot be co-magmatic as there is no way to derive one liquid from another by fractional crystallization. On the other hand, the Panzhihua intrusion appears to be related to Permian alkali intrusions in the region, but does not appear to be related to the alkali basalts recognized in the Longzhoushan lava stratigraphy. Comparably, the Limahe intrusion appears to be a genetic relation to the picrites, whereas the Xinjie intrusion may be genetically related to be low-Ti basalts. Additionally, the gabbro-diorites and peridotites of the Limahe intrusion are not co-magmatic, and the former appears to be derived liquid from high-Ti basalts. 相似文献
443.
Different extractants were used to determine various forms of Fe and Al in three soil profiles developed under a tropical environment in India. The average contents of Fe and Al, extracted by different extracting reagents were found to be in descending order, as follows:
Analysis of pyrophosphate (pyr), oxalate (oxa) and dithionate (dith) extractable Fe and Al showed that with increasing soil age, the crystalline Fe and Al oxides increased at the expense of the poorly crystalline forms. The mean content of amorphous Fe and Al, crystalline Fe and Al and their ratio values in the three different soil series estimated the degree of soil development and were found to be in the following descending order: Ghoradanga >Kanchanpur >Lachimpur. Correlation between different forms of Fe and Al and selected soil properties were examined. Multiple regression equations were formulated to show the relation among soil properties and different forms of Fe and Al. 相似文献
Fe}}_{{{\text{dith}}}} > {\text{Fe}}_{{{\text{oxa}}}} > {\text{Fe}}_{{{\text{pyr}}}} $$ " align="middle" vspace="20%" border="0"> |
444.
湖南洞庭湖地区红土的元素地球化学特征及其指示意义 总被引:1,自引:0,他引:1
红土作为一种热带、亚热带地区广泛分布的松散岩类,其蕴含的气候环境变化信息和养分状况使得对其研究具有重要的理论和实际意义。在对洞庭湖区红土地层年代学研究的基础上,详细讨论了红土中元素的分布特征及控制因素,认为第四纪红土的地球化学特征反映了区域气候环境、流域物源特征和红土化作用强度的变化,对生态地球化学环境恢复有重要意义。 相似文献
445.
在广东省湛江市深层承压水开采过程中,在开采区内形成了区域水位降落漏斗。降落漏斗的形成对深层承压水的化学特性产生了一些影响,具体表现为:西部和西北部铁含量低,北部铁含量高,降落漏斗附近铁含量中等。对降落漏斗内深层承压水铁分布进行演化模拟计算,结果表明,降落漏斗内深层承压水的补给可能来自北部高铁承压水、西部和西北部低铁承压水以及浅层承压水。深层承压水由这些地下水混合而成,高铁地下水是主要补给来源。降落漏斗中心区深层承压水的大量人工开采导致其铁含量升高。地下水在向降落漏斗中心区的径流过程中,不但发生了方解石、白云石和赤铁矿的溶解作用以及菱铁矿和水绿矾的沉淀作用,而且发生了Na+与Ca2+的交换、铁氧化-还原反应等一系列复杂的水-岩作用。 相似文献
446.
Slimane Merouani Aissa Dehane Aouattef Belghit Oualid Hamdaoui Yasser A. Tobba Chouaib Lahlou Maulin P. Shah 《洁净——土壤、空气、水》2023,51(3):2100304
This research aims at optimizing the effects of processing conditions, salts, natural organic materials, and water matrices quality on the effectiveness of the Fe(II)/K2S2O8/hydroxylamine process in the degradation of pararosaniline. Assisting the Fe(II)/KPS (potassium persulfate) treatment with protonated hydroxylamine (H3NOH+) increases the degradation rate of pararosaniline by more than 100%. Radical scavenger experiments show that the SO4●− radical dominates pararosaniline degradation in the Fe(II)/KPS system, whereas ●OH is the dominant reactive species in the presence of H3NOH+. The disparity in pararosaniline removal effectiveness upon the Fe(II)/KPS/H3NOH+ and Fe(II)/KPS systems gets more significant with increasing reactants doses (i.e., H3NOH+, H2O2, Fe(II)) and solution pH (2–7). Interestingly, H3NOH+ increased the working pH to 6 instead of pH 4 for the Fe(II)/KPS process. Moreover, mineral anions such as Cl−, NO3−, NO2−, and SO4− (up to 10 × 10−3 m ) do not affect the efficiency of the Fe(II)/KPS/H3NOH+ process. In contrast, acid humic decreases the performance of the process by ≈20%. In natural mineral water, treated wastewater, and river water samples, the Fe(II)/KPS/H3NOH+ process maintains higher degradation performance (≈95%), whereas the process efficiency is greatly amortized in seawater. The efficiency of the Fe(II)/KPS process was drastically decreased in the various water matrices. 相似文献
447.
John D. Coates Romy Chakraborty Susan M. OConnor Claudia Schmidt Jürgen Thieme 《洁净——土壤、空气、水》2001,28(7):420-427
As part of a study on microbial redox alteration of humic substances we investigated the potential effect of this metabolism on the fate of heavy metals and hydrocarbons as a result of conformational alteration of the humic molecular structure due to microbial reduction. Our studies indicate that the microbial reduction of humic acids (HA) results in significant morphological and geochemical alterations. X‐ray microscopy analysis indicate that the conformational structure of the humic colloids is altered as a result of the redox change. In the reduced state, the HA appeared as small dense particles, on reoxidation, large loose aggregates were formed. In addition, spectrofluorometric studies indicated that the binding capacity of the HA for naphthalene was decreased by 10% when the HA was reduced. Similarly, the reduced HA yielded higher surface tension values at all concentrations tested which is indicative of a more hydrophilic and less hydrophobic solute. On reoxidation, the surface tension values reverted back to values similar to those obtained for the untreated oxidized HA. These data indicate that the hydrophobicity of the HA is altered on biological reduction of the HA and that this alteration is reversible. In contrast the reduced HA demonstrated a 15% higher affinity for heavy metals such as divalent cobalt than the oxidized HA. In addition to increasing the binding capacity of HA for heavy metals, the reduction of the HA also decreased the bioavailability and toxicity of bound heavy metals such as chromium. When incubated in the presence of Cr(III) and HA, cells of Escherichia coli grew much more rapidly in the presence of the reduced HA suggesting that the higher metal binding capacity of the reduced humic substances resulted in a removal of the Cr(III) from solution and hence reduced its bioavailability and toxicity. These studies demonstrate that HA redox state and reduction of humic acids by microorganisms can have a significant effect on the molecular morphology and binding constants of HA for heavy metals and hydrocarbons and also directly affects the bioavailability of these compounds in the environment. 相似文献
448.
449.
主要研究了磷酸铝(Al PO4)的加入量对氧化亚铁硫杆菌HX3培养液中铁矿物形成的影响,并对相应沉淀产物进行了结构表征分析。结果表明,Al PO4的加入对细菌培养过程中Fe2+的氧化无明显影响,但可促进Fe3+的水解和初始铁矿物相的形成,也可加速黄钾铁矾的转化形成。Al/Fe(摩尔比)为0. 04~1的培养液中主要形成产物为施威特曼石和黄钾铁矾; Al/Fe为0. 4和1时另有磷酸铁矿形成。较高的Al/Fe比值和磷酸根含量有利于磷酸铁矿的形成。 相似文献
450.
Lead- and Pb-As-jarosites are minerals common to acidic, sulphate-rich environments, including weathering zones of sulphide ore deposits and acid rock or acid mine drainage (ARD/AMD) sites, and often form on or near galena. The structures of these jarosites are based on linear tetrahedral-octahedral-tetrahedral (T-O-T) sheets, comprised of slightly distorted FeO6 octahedra and SO42− (-AsO43− in Pb-As-jarosites) tetrahedra. To better understand the dissolution mechanisms and products of the break down of Pb- and Pb-As-jarosite, preliminary batch dissolution experiments were conducted on synthetic Pb- and Pb-As-jarosite at pH 2 and 20 °C, to mimic environments affected by ARD/AMD, and at pH 8 and 20 °C, to simulate ARD/AMD environments recently remediated with slaked lime (Ca(OH)2). All four dissolutions are incongruent. Dissolution of Pb-jarosite at pH 2 yields aqueous Pb, Fe and SO42−. The pH 8 Pb-jarosite dissolution yields aqueous Pb, SO42− and poorly crystalline Fe(OH)3, which does not appear to resorb Pb or SO42−, possibly due to the low solution pH (3.44-3.54) at the end of the experiment. The pH 2 and 8 dissolutions of Pb-As-jarosite result in the formation of secondary compounds (poorly crystalline PbSO4 for pH 2 dissolution; poorly crystalline PbSO4 and Fe(OH)3 for pH 8 dissolution), which may act as dissolution inhibitors after 250 to 300 h of dissolution. In the pH 2 dissolution, aqueous Fe, SO42− and AsO43− also form, and in the pH 8 dissolution, Fe(OH)3 precipitates then subsequently resorbs aqueous AsO43−. The dissolutions probably proceed by preferred dissolution of the A- and T-sites, which contain Pb, and SO42− and AsO43−, respectively, rather than Fe, which is sterically remote, within the T-O-T Pb- and Pb-As-jarosite structures. These data provide the foundation necessary for further, more detailed investigations into the dissolution of Pb- and Pb-As-jarosites. 相似文献