全文获取类型
收费全文 | 792篇 |
免费 | 92篇 |
国内免费 | 104篇 |
专业分类
测绘学 | 8篇 |
大气科学 | 7篇 |
地球物理 | 508篇 |
地质学 | 345篇 |
海洋学 | 45篇 |
天文学 | 2篇 |
综合类 | 20篇 |
自然地理 | 53篇 |
出版年
2024年 | 3篇 |
2023年 | 5篇 |
2022年 | 19篇 |
2021年 | 17篇 |
2020年 | 25篇 |
2019年 | 13篇 |
2018年 | 16篇 |
2017年 | 17篇 |
2016年 | 14篇 |
2015年 | 14篇 |
2014年 | 33篇 |
2013年 | 25篇 |
2012年 | 16篇 |
2011年 | 29篇 |
2010年 | 12篇 |
2009年 | 73篇 |
2008年 | 108篇 |
2007年 | 58篇 |
2006年 | 62篇 |
2005年 | 64篇 |
2004年 | 46篇 |
2003年 | 48篇 |
2002年 | 22篇 |
2001年 | 18篇 |
2000年 | 53篇 |
1999年 | 42篇 |
1998年 | 36篇 |
1997年 | 20篇 |
1996年 | 20篇 |
1995年 | 11篇 |
1994年 | 7篇 |
1993年 | 12篇 |
1992年 | 6篇 |
1991年 | 6篇 |
1990年 | 4篇 |
1989年 | 5篇 |
1987年 | 4篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1954年 | 1篇 |
排序方式: 共有988条查询结果,搜索用时 15 毫秒
61.
腾冲火山活动监测,预测与对策研究中的若干重要问题 总被引:1,自引:1,他引:1
《膳冲火山活动监测、预测与对策研究》项目是一项集火山活动监测研究、防灾及资源综合开发与利用为一体的系统工程。需要火山地质、地震、地球化学、地球物理、地壳形变及地热等诸多相关学科的合理配置和联合攻关。在过去的30年,众多学和研究实体对腾冲火山进行 大量的观察和研究获得一批与火山活动的相关的基础研究成果。其中也不乏说明腾冲火山存在在喷发危险性的证据。为了保证本重大项目能在有限时间内及有限的人力、财务 相似文献
62.
63.
64.
S. Gambino 《Studia Geophysica et Geodaetica》2006,50(4):663-674
During 1991–93 at Mount Etna, long-period (LP) events occurring in swarms characterized the evolution of the eruption. The
presence of multiplets i.e. groups of events with similar waveform signatures, has been recognized within this activity.
Traditional techniques for locating LP events do not allow obtaining reliable hypocenters, which have only succeeded in placing
earthquakes in a roughly 1 km2 area slightly east of the Mt. Etna Northeast Crater.
Hypocenters have been relocated in two steps: the absolute location has been improved using Thurber’s code and a complex 3D
velocity model; a highly precise relative location has been applied on multiplets to define the source geometry.
3D locations and high precision analysis suggest that during the 1991–93 eruption the resonator producing LP events was a
part of the uppermost Northeast Crater conduit, measuring 210 meters in height and 45–50 meters in diameter. 相似文献
65.
Llullaillaco is one of a chain of Quaternary stratovolcanoes that defines the present Andean Central Volcanic Zone (CVZ), and marks the border between Chile and Argentina/Bolivia. The current edifice is constructed from a series of thick dacitic lava flows, forming the second tallest active volcano in the world (6739 m). K–Ar and new biotite laser 40Ar/39Ar step-heating dates indicate that the volcano was constructed during the Pleistocene (≤1.5 Ma), with a youngest date of 0.048±0.012 Ma being recorded for a fresh dacite flow that descends the southern flank. Additional 40Ar/39Ar measurements for andesitic and dacitic lava flows from the surrounding volcanic terrain yield dates of between 11.94±0.13 Ma and 5.48±0.07 Ma, corresponding to an extended period of Miocene volcanism which defines much of the landscape in this region. Major- and trace-element compositions of lavas from Llullaillaco are typical of Miocene–Pleistocene volcanic rocks from the western margin of the CVZ, and are related to relatively shallow-dipping subduction of the Nazca plate beneath northern Chile and Argentina.Oversteepening of the edifice by stacking of thick, viscous, dacitic lava flows resulted in collapse of its southeastern flank to form a large volcanic debris avalanche. Biotite 40Ar/39Ar dating of lava blocks from the avalanche deposit indicate that collapse occurred at or after 0.15 Ma, and may have been triggered by extrusion of a dacitic flow similar to the one dated at 0.048±0.012 Ma. The avalanche deposits are exceptionally well preserved due to the arid climate, and prominent levées, longitudinal ridges, and megablocks up to 20-m diameter are observed.The avalanche descended 2.8 km vertically, and bifurcated around an older volcano, Cerro Rosado, before debouching onto the salt flats of Salina de Llullaillaco. The north and south limbs of the avalanche traveled 25 and 23 km, respectively, and together cover an area of approximately 165 km2. Estimates of deposit volume are hampered by a lack of thickness information except at the edges, but it is likely to be between 1 and 2 km3. Equivalent coefficients of friction of 0.11 and 0.12, and excess travel distances of 20.5 and 18.5 km, are calculated for the north and south limbs, respectively. The avalanche ascended 400 m where it broke against the western flank of Cerro Rosado, and a minimum flow velocity of 90 m s−1 can be calculated at this point; lower velocities of 45 m s−1 are calculated where distal toes ascend 200 m slopes.It is suggested that the remaining precipitous edifice has a high probability for further avalanche collapse in the event of renewed volcanism. 相似文献
66.
Despite the recent recognition of Mount Etna as a periodically violently explosive volcano, the hazards from various types of pyroclastic density currents (PDCs) have until now received virtually no attention at this volcano. Large-scale pyroclastic flows last occurred during the caldera-forming Ellittico eruptions, 15–16 ka ago, and the risk of them occurring in the near future is negligible. However, minor PDCs can affect much of the summit area and portions of the upper flanks of the volcano. During the past ~ 20 years, small pyroclastic flows or base-surge-like vapor and ash clouds have occurred in at least 8 cases during summit eruptions of Etna. Four different mechanisms of PDC generation have been identified during these events: (1) collapse of pyroclastic fountains (as in 2000 and possibly in 1986); (2) phreatomagmatic explosions resulting from mixing of lava with wet rock (2006); (3) phreatomagmatic explosions resulting from mixing of lava with thick snow (2007); (4) disintegration of the unstable flanks of a lava dome-like structure growing over the rim of one of the summit craters (1999). All of these recent PDCs were of a rather minor extent (maximum runout lengths were about 1.5 km in November 2006 and March 2007) and thus they represented no threat for populated areas and human property around the volcano. Yet, events of this type pose a significant threat to the lives of people visiting the summit area of Etna, and areas in a radius of 2 km from the summit craters should be off-limits anytime an event capable of producing similar PDCs occurs. The most likely source of further PDCs in the near future is the Southeast Crater, the youngest, most active and most unstable of the four summit craters of Etna, where 6 of the 8 documented recent PDCs originated. It is likely that similar hazards exist in a number of volcanic settings elsewhere, especially at snow- or glacier-covered volcanoes and on volcano slopes strongly affected by hydrothermal alteration. 相似文献
67.
68.
利用面波层析成像和远震接收函数方法对长白山地区的地壳上地幔速度结构进行了研究。结果表明:长白山火山区附近存在岩石圈减薄、上地幔软流圈增厚以及上地幔S波速度降低等与上地幔高温物质有关的现象,它表明长白山的岩浆系统一直延伸到上地幔软流圈范围。天池火山区地壳内部存在明显的S波低速层,在离天池火山口较近的WQD台附近,低速层顶部埋深约8km,厚度近20km,S波最小速度约2.2km/s。在距离天池火山北部50km的EDO台地壳中没有明显的低速层。火山区S波速度结构总体表现出距离天池越近,地壳的V_P/V_S越大,低速层的厚度和幅度增加的特征,表明天池火山口附近地壳内部存在高温物质或岩浆囊。CBS台站不同方位的接收函数及反演结果表明,地表低速层厚度以及莫霍面深度存在随方位的变化。地表低速层在南部方向明显较厚,莫霍面深度在南部天池火山口方向存在小幅度抬升。CBS台站附近特殊的近地表速度结构可能是该台站记录的火山地震波形主频较低的主要因素。天池火山口附近莫霍面的小幅度抬升意味着存在与火山作用有关的壳幔物质交换通道 相似文献
69.
F. Barberi F. Brondi M. L. Carapezza L. Cavarra C. Murgia 《Journal of Volcanology and Geothermal Research》2003,123(1-2):231
Preceded by four days of intense seismicity and marked ground deformation, a new eruption of Mt. Etna started on 17 July and lasted until 9 August 2001. It produced lava emission and strombolian and phreatomagmatic activity from four different main vents located on a complex fracture system extending from the southeast summit cone for about 4.5 km southwards, from 3000 to 2100 m elevation (a.s.l.). The lava emitted from the lowest vent cut up an important road on the volcano and destroyed other rural roads and a few isolated country houses. Its front descended southwards to about 4 km distance from the villages of Nicolosi and Belpasso. A plan of intervention, including diversion and retaining barriers and possibly lava flow interruption, was prepared but not activated because the flow front stopped as a consequence of a decrease in the effusion rate. Extensive interventions were carried out in order to protect some important tourist facilities of the Sapienza and Mts. Silvestri zones (1900 m elevation) from being destroyed by the lava emitted from vents located at 2700 m and 2550 m elevation. Thirteen earthen barriers (with a maximum length of 370 m, height of 10–12 m, base width of 15 m and volume of 25 000 m3) were built to divert the lava flow away from the facilities towards a path implying considerably less damage. Most of the barriers were oriented diagonally (110–135°) to the direction of the flow. They were made of loose material excavated nearby and worked very nicely, resisting the thrust of the lava without any difficulty. After the interventions carried out on Mt. Etna in 1983 and in 1991–1992, those of 2001 confirm that earthen barriers can be very effective in controlling lava flows. 相似文献
70.
地幔转换带是上下地幔物质运移和能量交换的必经通道,其速度结构和上下界面的起伏能够为认识地幔内部的温度和物质变化、地幔对流模式等地球演化相关的科学问题提供关键约束.本文利用布设在中国东北地区的高密度固定台网和流动台阵所记录的远震体波接收函数,采用Ps散射核叠前深度偏移成像方法,获得了台站下方地幔转换带界面及其内部速度间断面的三维精细图像.研究结果表明:西北太平洋俯冲板片上下界面在地幔转换带内清晰可见,在高纬度(44°N)区域存在约30°的倾角;660-km间断面的深度起伏具有明显的分区性,在与俯冲板片相交处以西200~300 km,界面出现约20~40 km的下沉,而长白山和龙岗火山的西北区域存在约5~15 km的抬升,分别与板片滞留引起的低温异常和局部热物质上涌相对应;410-km间断面的起伏形态较复杂,在大部分区域观测到大于10 km的下沉,且表现出明显的区域性横向变化,与深俯冲动力学背景下冷的温度异常造成的影响不一致.我们认为板片俯冲、停滞和海沟后撤过程中引起的地幔转换带物质异常、含水状态及分布的变化是显著改变410-km间断面形态的主要原因.本文获得的高精度地幔转换带界面三维形态为更好地认识东北亚地区俯冲板片在地幔物质分布和能量交换中的作用提供了重要参考.
相似文献