首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10461篇
  免费   2061篇
  国内免费   2892篇
测绘学   436篇
大气科学   2123篇
地球物理   3045篇
地质学   5123篇
海洋学   1633篇
天文学   1522篇
综合类   673篇
自然地理   859篇
  2024年   40篇
  2023年   130篇
  2022年   247篇
  2021年   319篇
  2020年   361篇
  2019年   428篇
  2018年   360篇
  2017年   380篇
  2016年   403篇
  2015年   471篇
  2014年   665篇
  2013年   658篇
  2012年   674篇
  2011年   684篇
  2010年   553篇
  2009年   748篇
  2008年   687篇
  2007年   846篇
  2006年   741篇
  2005年   655篇
  2004年   623篇
  2003年   578篇
  2002年   524篇
  2001年   439篇
  2000年   455篇
  1999年   474篇
  1998年   413篇
  1997年   332篇
  1996年   310篇
  1995年   270篇
  1994年   202篇
  1993年   179篇
  1992年   153篇
  1991年   87篇
  1990年   80篇
  1989年   85篇
  1988年   63篇
  1987年   31篇
  1986年   19篇
  1985年   12篇
  1984年   6篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1980年   6篇
  1979年   1篇
  1978年   6篇
  1954年   5篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
181.
伯英  刘成林  沈力建  丁婷 《地质学报》2022,96(7):2626-2633
在生物地球化学和“深穿透”理论的指导下,在兰坪-思茅盆地勐野井钾盐矿区及周边开展了生物地球化学找钾技术方法的探索性研究。沿江城县勐野井钾盐矿区及周边一线,对乔木类植物叶子进行了取样,分析,数据处理,特征指标筛选,获得了研究区植物样品主量和微量组分含量背景值,初步圈定了异常区,与以往圈定的找钾远景区较吻合。该区生物地球化学找钾技术取得较好的效果,今后还需扩大采样区域,获得更多样本数据,将找钾特征指标及其异常值的阈值进一步补充完善。  相似文献   
182.
We investigate the global evolution of a turbulent protoplanetary disk incorporating the effects of Maxwell stress due to a large-scale magnetic field permeating the disk. A magnetic field is produced continuously by an dynamo and the resultant Maxwell stress assists the viscous stress in p roviding the means for disk evolution. The most striking feature of magnetized disk evolution is the presence of the surface density bulge located in the magnetic gap, the region of the disk where the degree of ionization is too low to allow for coupli ng between the magnetic field and the gas. The bulge persists for a time of the order of 105–106 yr. The presence and persistence of the surface density bulge may have important implications for the process of planet formation and the overall characteristics of resultant planetary systems.Operated by USRA under contract No. NASW-4574 with NASA.  相似文献   
183.
220 ka以来萨拉乌苏河流域地层磁化率与气候变化   总被引:6,自引:7,他引:6  
 萨拉乌苏河流域滴哨沟湾剖面磁化率变化结果表明:近220 ka来我国北方气候变化极不稳定,存在着不同尺度的频繁变化,特别是寒冷气候阶段变化尤为频繁,其中倒数第二次冰期存在5个气候旋回,末次冰期存在10个气候旋回。这些气候变化与深海氧同位素、极地冰芯反映的全球变化具有良好的对应关系,反映了该区气候变化与全球变化的一致性。控制本区气候变化的主要因素是全球冰量变化及太阳辐射影响的东亚季风变化。  相似文献   
184.
The Load/Unload Response Ratio (LURR) method is proposed for short-to-intermediate-term earthquake prediction [Yin, X.C., Chen, X.Z., Song, Z.P., Yin, C., 1995. A New Approach to Earthquake Prediction — The Load/Unload Response Ratio (LURR) Theory, Pure Appl. Geophys., 145, 701–715]. This method is based on measuring the ratio between Benioff strains released during the time periods of loading and unloading, corresponding to the Coulomb Failure Stress change induced by Earth tides on optimally oriented faults. According to the method, the LURR time series usually climb to an anomalously high peak prior to occurrence of a large earthquake. Previous studies have indicated that the size of critical seismogenic region selected for LURR measurements has great influence on the evaluation of LURR. In this study, we replace the circular region usually adopted in LURR practice with an area within which the tectonic stress change would mostly affect the Coulomb stress on a potential seismogenic fault of a future event. The Coulomb stress change before a hypothetical earthquake is calculated based on a simple back-slip dislocation model of the event. This new algorithm, by combining the LURR method with our choice of identified area with increased Coulomb stress, is devised to improve the sensitivity of LURR to measure criticality of stress accumulation before a large earthquake. Retrospective tests of this algorithm on four large earthquakes occurred in California over the last two decades show remarkable enhancement of the LURR precursory anomalies. For some strong events of lesser magnitudes occurred in the same neighborhoods and during the same time periods, significant anomalies are found if circular areas are used, and are not found if increased Coulomb stress areas are used for LURR data selection. The unique feature of this algorithm may provide stronger constraints on forecasts of the size and location of future large events.  相似文献   
185.
East and Southeast Asia comprises a complex assembly of allochthonous continental lithospheric crustal fragments (terranes) together with volcanic arcs, and other terranes of oceanic and accretionary complex origins located at the zone of convergence between the Eurasian, Indo-Australian and Pacific Plates. The former wide separation of Asian terranes is indicated by contrasting faunas and floras developed on adjacent terranes due to their prior geographic separation, different palaeoclimates, and biogeographic isolation. The boundaries between Asian terranes are marked by major geological discontinuities (suture zones) that represent former ocean basins that once separated them. In some cases, the ocean basins have been completely destroyed, and terrane boundaries are marked by major fault zones. In other cases, remnants of the ocean basins and of subduction/accretion complexes remain and provide valuable information on the tectonic history of the terranes, the oceans that once separated them, and timings of amalgamation and accretion. The various allochthonous crustal fragments of East Asia have been brought into close juxtaposition by geological convergent plate tectonic processes. The Gondwana-derived East Asia crustal fragments successively rifted and separated from the margin of eastern Gondwana as three elongate continental slivers in the Devonian, Early Permian and Late Triassic–Late Jurassic. As these three continental slivers separated from Gondwana, three successive ocean basins, the Palaeo-Tethys,. Meso-Tethys and Ceno-Tethys, opened between these and Gondwana. Asian terranes progressively sutured to one another during the Palaeozoic to Cenozoic. South China and Indochina probably amalgamated in the Early Carboniferous but alternative scenarios with collision in the Permo–Triassic have been suggested. The Tarim terrane accreted to Eurasia in the Early Permian. The Sibumasu and Qiangtang terranes collided and sutured with Simao/Indochina/East Malaya in the Early–Middle Triassic and the West Sumatra terrane was transported westwards to a position outboard of Sibumasu during this collisional process. The Permo–Triassic also saw the progressive collision between South and North China (with possible extension of this collision being recognised in the Korean Peninsula) culminating in the Late Triassic. North China did not finally weld to Asia until the Late Jurassic. The Lhasa and West Burma terranes accreted to Eurasia in the Late Jurassic–Early Cretaceous and proto East and Southeast Asia had formed. Palaeogeographic reconstructions illustrating the evolution and assembly of Asian crustal fragments during the Phanerozoic are presented.  相似文献   
186.
In the East China Sea (ECS), there are some mud areas, including the south coastal mud area, the north coastal mud area, and the mud area to the southwest of Cheju Island. X-ray fluorescence (XRF) techniques and Thermal Ionization Mass Spectrometry (TIMS) were used to study the high-resolution sedimentary record of Pb concentrations and Pb stable isotopic compositions in the past one hundred and fifty years in the coastal mud of the ECS. Pb concentrations of a ^210Pb dating S5 core in the study area have increased rapidly since 1980, and reached the maximal value with 65.08 μg/g in 2000, corresponding to the fast economic development of China since the implementation of the "Reform and Open Policy" in 1978; ^206Pb/^207Pb ratios generally had stabilized at 1.195 from 1860 to 1966, and decreased gradually from 1966 to 2000, indicating that the anthropogenic source Pb contribution to the ECS has increased gradually since 1966, especially since 1980. Pb concentrations decreased distinctly from 2000 to 2003 and ^206Pb/^207Pb ratios increased from 2001 to 2003, corresponding closely to the ban of lead gasoline from 2000 in China. From 1950 to 2003, there occurred four distinct decrease events of ^206Pb/^207Pb, possibly responding to the Changjiang River (Yangtze River) catastrophic floods in 1998, 1991, 1981 and 1954; from 1860 to 1966, there were two decrease periods of ^206Pb/^207Pb, which may respond to the catastrophic floods of Changjiang River in 1931 and 1935, and 1870. As a result of the erosion and drowning by the catastrophic floods, the anthropogenic lead accumulated in soil and water environments over a long period of time was brought into the Changjiang River, then part of them was finally transported into the ECS, which leads to changes in Pb stable isotopic composition.  相似文献   
187.
Partly laminated sediments were sampled from the brine-filled, anoxic Shaban Deep basin in the northern Red Sea. At about 4200 cal yr BP more than two millennia of anoxic sedimentation is replaced by a sub-oxic facies strongly suggesting the episodic absence of the brine. At the same time stable oxygen isotopes from surface dwelling foraminifera show a sharp increase (within less than 100 yr) pointing to a strong positive salinity anomaly at the sea surface. This major evaporation event significantly enhanced the renewal of deep water and the subsequent ventilation of the small Shaban Deep basin. The timing and strength of the reconstructed environmental changes around 4200 cal yr BP suggest that this event is the regional expression of a major drought event, which is widely observed in the neighboring regions, and which strongly affected Middle East agricultural civilizations.  相似文献   
188.
Besides granites of the ilmenite series, in which the anisotropy of magnetic susceptibility (AMS) is mainly controlled by paramagnetic minerals, the AMS of igneous rocks is commonly interpreted as the result of the shape-preferred orientation of unequant ferromagnetic grains. In a few instances, the anisotropy due to the distribution of ferromagnetic grains, irrespective of their shape, has also been proposed as an important AMS source. Former analytical models that consider infinite geometry of identical and uniformly magnetized and coaxial particles confirm that shape fabric may be overcome by dipolar contributions if neighboring grains are close enough to each other to magnetically interact. On these bases we present and experimentally validate a two-grain macroscopic numerical model in which each grain carries its own magnetic anisotropy, volume, orientation and location in space. Compared with analytical predictions and available experiments, our results allow to list and quantify the factors that affect the effects of magnetic interactions. In particular, we discuss the effects of (i) the infinite geometry used in the analytical models, (ii) the intrinsic shape anisotropy of the grains, (iii) the relative orientation in space of the grains, and (iv) the spatial distribution of grains with a particular focus on the inter-grain distance distribution. Using documented case studies, these findings are summarized and discussed in the framework of the generalized total AMS tensor recently introduced by Cañon-Tapia (Cañon-Tapia, E., 2001. Factors affecting the relative importance of shape and distribution anisotropy in rocks: theory and experiments. Tectonophysics, 340, 117–131.). The most important result of our work is that analytical models far overestimate the role of magnetic interaction in rock fabric quantification. Considering natural rocks as an assemblage of interacting and non-interacting grains, and that the effects of interaction are reduced by (i) the finite geometry of the interacting clusters, (ii) the relative orientation between interacting grains, (iii) their heterogeneity in orientation, shape and bulk susceptibility, and (iv) their inter-distance distribution, we reconcile analytical models and experiments with real case studies that minimize the role of magnetic interaction onto the measured AMS. Limitations of our results are discussed and guidelines are provided for the use of AMS in geological interpretation of igneous rock fabrics where magnetic interactions are likely to occur.  相似文献   
189.
New results on the pressure–temperature–time evolution, deduced from conventional geothermobarometry and in situ U‐Th‐total Pb dating of monazite, are presented for the Bemarivo Belt in northern Madagascar. The belt is subdivided into a northern part consisting of low‐grade metamorphic epicontinental series and a southern part made up of granulite facies metapelites. The prograde metamorphic stage of the latter unit is preserved by kyanite inclusions in garnet, which is in agreement with results of the garnet (core)‐alumosilicate‐quartz‐plagioclase (inclusions in garnet; GASP) equilibrium. The peak metamorphic stage is characterized by ultrahigh temperatures of ~900–950 °C and pressures of ~9 kbar, deduced from GASP equilibria and feldspar thermometry. In proximity to charnockite bodies, garnet‐sillimanite‐bearing metapelites contain aluminous orthopyroxene (max. 8.0 wt% Al2O3) pointing to even higher temperatures of ~970 °C. Peak metamorphism is followed by near‐isothermal decompression to pressures of 5–7 kbar and subsequent near‐isobaric cooling, which is demonstrated by the extensive late‐stage formation of cordierite around garnet. Internal textures and differences in chemistry of metapelitic monazite point to a polyphasic growth history. Monazite with magmatically zoned cores is rarely preserved, and gives an age of c. 737 ± 19 Ma, interpreted as the maximum age of sedimentation. Two metamorphic stages are dated: M1 monazite cores range from 563 ± 28 Ma to 532 ± 23 Ma, representing the collisional event, and M2 monazite rims (521 ± 25 Ma to 513 ± 14 Ma), interpreted as grown during peak metamorphic temperatures. These are among the youngest ages reported for high‐grade metamorphism in Madagascar, and are supposed to reflect the Pan‐African attachment of the Bemarivo Belt to the Gondwana supercontinent during its final amalgamation stage. In the course of this, the southern Bemarivo Belt was buried to a depth of >25 km. Approximately 25–30 Myr later, the rocks underwent heating, interpreted to be due to magmatic underplating, and uplift. Presumably, the northern part of the belt was also affected by this tectonism, but buried to a lower depth, and therefore metamorphosed to lower grades.  相似文献   
190.
Heavy metal distribution patterns in river sediments aid in understanding the exogenic cycling of elements as well as in assessing the effect of anthropogenic influences. In India, the Subernarekha river flows over the Precambrian terrain of the Singhbhum craton in eastern India. The rocks are of an iron ore series and the primary rock types are schist and quartzite. One main tributary, the Kharkhai, flows through granite rocks and subsequently flows through the schist and quartzite layers. The Subernarekha flows through the East Singhbhum district, which is one of India’s industrialised areas known for ore mining, steel production, power generation, cement production and other related activities. Freshly deposited river sediments were collected upstream and downstream the industrial zone. Samples were collected from four locations and analysed in <63-μm sediment fraction for heavy metals including Zn, Pb, Cd and Cu by anodic stripping voltammetry. Enrichment of these elements over and above the local natural concentration level has been calculated and reported. Sediments of the present study are classified by Muller’s geo-accumulation index (I geo) and vary from element to element and with climatic seasons. During pre-monsoon period the maximum I geo value for Zn is moderately to highly polluted and for Cu and Pb is moderately polluted, respectively, based on the Muller’s standard. Anthropogenic, lithogenic or cumulative effects of both components are the main reasons for such variations in I geo values. The basic igneous rock layer through which the river flows or a seasonal rivulet that joins with the main river may be the primary source for lithogenic components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号