Over the past decades, sea ice in the polar regions has been significantly affecting local and even hemispheric climate through a positive ice albedo feedback mechanism. The role of fast ice, as opposed to drift ice, has not been well-studied due to its relatively small coverage over the earth. In this paper, the optical properties and surface energy balance of land fast ice in spring are studied using in situ observations in Barrow, Alaska. The results show that the albedo of the fast ice varied between 0.57 and 0.85 while the transmittance increased from 1.3×10?3 to 4.1×10?3 during the observation period. Snowfall and air temperature affected the albedo and absorbance of sea ice, but the transmittance had no obvious relationship with precipitation or snow cover. Net solar shortwave radiation contributes to the surface energy balance with a positive 99.2% of the incident flux, with sensible heat flux for the remaining 0.8%. Meanwhile, the ice surface loses energy through the net longwave radiation by 18.7% of the total emission, while the latent heat flux accounts for only 0.1%. Heat conduction is also an important factor in the overall energy budget of sea ice, contributing 81.2% of the energy loss. Results of the radiative transfer model reveal that the spectral transmittance of the fast ice is determined by the thickness of snow and sea ice as well as the amount of inclusions. As major inclusions, the ice biota and particulates have a significant influence on the magnitude and distribution of the spectral transmittance. Based on the radiative transfer model, concentrations of chlorophyll and particulate in the fast ice are estimated at 5.51 mg/m2 and 95.79 g/m2, which are typical values in the spring in Barrow. 相似文献
The analytical method (AM) for separation of composite waves is presented based on the Hilbert transform. It is ap-plicable to both regular and irregular trains of waves. The wave data series measured with two wave gauges in the experi-ments are separated into two series of incident and reflected waves. Then, the reflection coefficient can be easily ob-tained. The arrival of reflected waves can also be detected for improveraent of the accuracy of the reflection coefficient. The reflection performance of the physical model can be estimated exactly without calculation of wave height and phase difference. Numerical samples developed to test the method are proved to be accurate. Physical experiments are conduct-ed and compared with Goda s method and satisfactory results are obtained. 相似文献
This work studies the effects of long human habitation on site geotechnical conditions. It is focused on the city of Zefat that is located on the borders of the Dead Sea Transform in northern Israel. The city of Zefat, suffered severe damage and loss of life in historical earthquakes, as a consequence of earthquake induced landslides (EILS). In this work we evaluate the current EILS hazard for the city of Zefat using a GIS-based regional Newmark analysis, with calibration of the calculated Newmark displacement (representing EILS hazard) using maps of field evidence and historical documents testifying to slope instability that occurred in historical earthquakes.
We found that the core city of Zefat is built on a layered anthropogenic material, few meters deep which, was deposited as a result of more than 2000 years of human habitation. The anthropogenic material is mechanically weak, susceptible to slope failure and to amplification of seismic-shaking. It is responsible for the city's devastation in historical earthquakes and it is the source for the current high seismic hazard as well.
Our model shows that earthquakes of magnitudes (Mw) 5, 6 and 7 at distances of up to 10 km, 50 km and more than 100 km, respectively, are likely to induce landslides in the core city of Zefat. The current engineering status of the city is poor, and as a consequence severe damage and loss of life are expected in future earthquakes due to EILS, unless major engineering efforts are made. Cities in the Eastern Mediterranean with comparable long habitation histories (e.g., Jerusalem, Tiberias, Nablus, Amman) are expected to have similar geotechnical problems in their old sections and are advised to take appropriate engineering steps to reduce damage and loss of life in future earthquakes.
Evaluation of historical earthquake magnitudes based on reported local-damage may, however, lead to overestimated magnitudes where the damaged sites are built on anthropogenic talus (a common setting in the vicinity of the Dead Sea Transform). 相似文献