Fabric and stable isotopic composition of a Holocene stalagmite (CR1) from a cave in northern Sicily record changes in paleorainfall in the early Holocene. High δ13C stable isotope values in the calcite deposited from ca. 8500 to ca. 7500 yr ago are interpreted as reflecting periods of high rainfall. The wet phase was interrupted by two periods of multi-century duration characterized by relatively cool and dry winters centered at ca. 8200 and ca. 7500 yr ago, highlighted by low δ13C and δ18O values. A high variability of δ13C values is recorded from ca. 7500 to ca. 6500 yr ago and indicates that the transition from a pluvial early Holocene to the present-day climate conditions was punctuated by decadal-scale periods of relatively dry winters. In northern Sicily, the traditional elements of the Neolithic appear at ca. 7700 yr ago. It is possible that changes in rainfall influenced the passage from hunter-gathering to farming and sheep-herding economies. 相似文献
Cretaceous terrestrial sediments deposited in a series of intracratonic basins across the Gobi Desert region of southern Mongolia and northern China contain a unique and diverse vertebrate fauna. In 1996 an expedition jointly sponsored by the Mongolian Paleontological Center and the Hayashibara Museum of Natural Sciences revisited a number of famous vertebrate fossil localities in the eastern Gobi region of Mongolia and, as part of a broad geological and paleontological study, collected a series of paleomagnetic samples from measured sections at Bayn Shireh, Burkhant and Khuren Dukh, as well as from an unmeasured locality adjacent to Khuren Dukh. Expedition members also collected palynologic samples from Khuren Dukh and the adjacent locality. Paleomagnetic analysis shows that all the sites from which samples were collected display detrital remnant magnetization that is consistently normal in polarity. The measured Cretaceous magnetic directions are oriented to the east or northeast of the present day expected direction (declination 356.2°, inclination 65.2°), and they are wholly concordant with that expected for a mid-latitude Northern Hemisphere sampling locality, and with the directions for this period reported by other workers. These results, when considered in tandem with the known biostratigraphy, strongly suggest that the sedimentary deposits at all four localities in the eastern Gobi correlate to the normal polarity chron 34 (the Cretaceous Long Normal), which ranges in age from approximately 121 to 83.5 million years. Previous vertebrate, invertebrate and palynological data from Khuren Dukh suggest that the lower and middle parts of the stratigraphic interval exposed there (which have been assigned to the Shinekhudag Formation) are ‘Khukhtekian’ in age and correspond to the Aptian–Albian interval that can be broadly correlated to the older, Early Cretaceous part of the Cretaceous Long Normal, C34n. New palynologic data presented here indicate that these strata are no older than middle to late Albian. The rocks at Bayn Shireh (the Bayn Shireh Formation) have been assigned a ‘Baynshirenian’ biostratigraphic age that may range from Cenomanian to early Campanian. The magnetostratigraphy results presented here indicate that the strata at both the Bayn Shireh and Burkhant localities do not cross the Santonian/Campanian Stage boundary, however, as this is believed to lie at, or very near, the C34n/C33r reversal boundary. Thus, the Bayn Shireh Formation was most likely deposited near the end of the Cretaceous Long Normal Interval, no later than the latest Santonian. 相似文献