首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   12篇
  国内免费   4篇
地球物理   30篇
地质学   9篇
自然地理   1篇
  2023年   3篇
  2021年   3篇
  2020年   3篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2002年   1篇
  1998年   1篇
排序方式: 共有40条查询结果,搜索用时 0 毫秒
11.
In extensively glaciarized permafrost areas such as Northern Victoria Land, rock glaciers are quite common and are considered postglacial cryotic landforms. This paper reveals that two rock glaciers in Northern Victoria Land (at Adélie Cove and Strandline) that are located close to the Italian Antarctic Station (Mario Zucchelli Station) should have the same origin, although they were previously mapped as Holocene periglacial landforms and subsequently considered ice‐cored and ice‐cemented rock glaciers, respectively. In fact, by integrating different geophysical investigations and borehole stratigraphy, we show that both landforms have similar internal structures and cores of buried glacier ice. Therefore, this kind of rock glacier is possibly related to the long‐term creep of buried ice rather than to permafrost creep alone. This interpretation can be extended to the larger part of the features mapped as rock glaciers in Antarctica. In addition, a high‐reflective horizon sub‐parallel to the topographic surface was detected in Ground Probing Radar (GPR) data over a large part of the study area. Combining all the available information, we conclude that it cannot be straightforwardly interpreted as the base of the active layer but rather represents the top of a cryo‐lithological unit characterized by ice lenses within sediments that could be interpreted as the transition zone between the active layer and the long‐term permafrost table. More generally, knowledge of the subsurface ice content and, in particular, the occurrence of massive ice and its depth is crucial to make realistic and affordable forecasts regarding thermokarst development and related feedbacks involving GHG emissions, especially in the case of cryosoils rich in carbon content. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
12.
The knowledge of the geological setting of pyroclastic covers and their water content distribution represents crucial information for stability analyses of slopes potentially subject to debris-flow phenomena. The study we here present would provide a contribution to this issue by means of an approach based on electrical resistivity measurements. Specifically, we describe the results of high-resolution 2D resistivity surveys carried out in a test area on Sarno Mountains (Campania Region – Southern Italy), where shallow landslides involving pyroclastic soils periodically occur triggered by critical rainfall events. We discuss the results in relation to the geology of the area in order to locate characteristic horizons of pyroclastic soils below the ground surface. Then, on the basis of a laboratory characterization of pyroclastic samples collected from the same test area at representative depths, we provide an estimation of the soil water content distribution in the field. Finally, we analyze temporal variations of the soil water content distribution by comparing the data of two surveys carried out in the autumnal and spring seasons, respectively.  相似文献   
13.
刘道涵  徐俊杰  齐信  邬健强 《中国岩溶》2023,42(6):1331-1338
岩溶地下水通道是隐伏岩溶区常见的地质现象,开展城市隐伏岩溶通道探测对城市地下空间开发和地质灾害防治具有重要意义。岩溶通道常具有高度的空间变异性,常规二维探测难以对其进行较好的表征。基于此,文章采用三维高密度电法对城市隐伏岩溶地下通道进行了精细探测,结合地球物理数值模拟和应用实例,分析三维高密度电法对不同充填类型岩溶地下通道的成像效果。结果表明:三维高密度电法较二维探测在数据量和分辨率上均有较大提升,可更直观地表征目标体三维电性结构特征,该探测方法对岩溶地下水通道成像具有优势;通过对武汉市源泉村岩溶地下水通道三维电性成像,揭示了该低温热泉的地下水运移特征,可为城市地热勘探开发提供参考。  相似文献   
14.
The nature and subsurface structure of the slip surface of a landslide was studied on the basis of geochemical analyses and 2-D electrical resistivity tomography (ERT) survey. Head scarp and lateral slip surfaces of the landslide marked by clear slickensided shear planes were composed of the average amounts of clayey silt (32.5%) and sand (67.5%). Energy dispersive X-ray spectroscopy (EDX) data revealed the enrichment of Si (23.24%), Fe (12.2%), Al (9.51%) and C (8.34%) in the elemental composition of the disturbed slip surface. From X-ray diffractometry (XRD) data, six main clay types were determined, such as Volkonskoite, Halloysite, Ferrosilite, Saponite, Illite and Nontronite. The ERT survey displayed that the landslide developed as a reactivation on the upper part of an old landslide body.  相似文献   
15.
Rock avalanches destroy and reshape landscapes in only a few minutes and are among the most hazardous processes on Earth. The surface morphology of rock avalanche deposits and the interaction with the underlying material are crucial for runout properties and reach. Water within the travel path is displaced, producing large impact waves and reducing friction, leading to long runouts. We hypothesize that the 0.2 km3 Holocene Eibsee rock avalanche from Mount Zugspitze in the Bavarian Alps overran and destroyed Paleolake Eibsee and left a unique sedimentological legacy of processes active during the landslide. We captured 9.5 km of electrical resistivity tomography (ERT) profiles across the rock avalanche deposits, with up to 120 m penetration depth and more than 34 000 datum points. The ERT profiles reveal up to ~50 m thick landslide debris, locally covering up to ~30 m of rock debris with entrained fine-grained sediments on top of isolated remnants of decametre-wide paleolake sediments. The ERT profiles allow us to infer processes involved in the interaction of the rock avalanche with bedrock, lake sediments, and morainal sediments, including shearing, bulging, and bulldozing. Complementary data from drilling, a gravel pit exposure, laboratory tests, and geomorphic features were used for ERT calibration. Sediments overrun by the rock avalanche show water-escape structures. Based on all of these datasets, we reconstructed both position and size of the paleolake prior to the catastrophic event. Our reconstruction of the event contributes to process an understanding of the rock avalanche and future modelling and hazard assessment. Here we show how integrated geomorphic, geophysical, and sedimentological approaches can provide detailed insights into the impact of a rock avalanche on a lake. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
16.
利用ERT数据推求非均质多孔介质渗透系数初探   总被引:2,自引:0,他引:2  
高密度电阻率成像法(ERT)能通过改变间距来对不同尺度上的地质体特征进行描述,近年来广泛地应用于地质、工程等领域。本文从电流场和渗流场的相似性出发来研究电阻率和渗透系数之间的关系,简要介绍了利用ERT技术所得的电阻率数据推求渗透系数的基本原理,并利用张家港大新和塘桥两处的ERT测量数据推求出渗透系数。与两地抽水试验结果和岩性取样分析的结果分别进行对比,结果较为吻合。  相似文献   
17.
Estimation of hydraulic parameters is essential to understand the interaction between groundwater flow and seawater intrusion. Though several studies have addressed hydraulic parameter estimation, based on pumping tests as well as geophysical methods, not many studies have addressed the problem with clayey formations being present. In this study, a methodology is proposed to estimate anisotropic hydraulic conductivity and porosity values for the coastal aquifer with unconsolidated formations. For this purpose, the one-dimensional resistivity of the aquifer and the groundwater conductivity data are used to estimate porosity at discrete points. The hydraulic conductivity values are estimated by its mutual dependence with porosity and petrophysical parameters. From these estimated values, the bilinear relationship between hydraulic conductivity and aquifer resistivity is established based on the clay content of the sampled formation. The methodology is applied on a coastal aquifer along with the coastal Karnataka, India, which has significant clayey formations embedded in unconsolidated rock. The estimation of hydraulic conductivity values from the established correlations has a correlation coefficient of 0.83 with pumping test data, indicating good reliability of the methodology. The established correlations also enable the estimation of horizontal hydraulic conductivity on two-dimensional resistivity sections, which was not addressed by earlier studies. The inventive approach of using the established bilinear correlations at one-dimensional to two-dimensional resistivity sections is verified by the comparison method. The horizontal hydraulic conductivity agrees with previous findings from inverse modelling. Additionally, this study provides critical insights into the estimation of vertical hydraulic conductivity and an equation is formulated which relates vertical hydraulic conductivity with horizontal. Based on the approach presented, the anisotropic hydraulic conductivity of any type aquifer with embedded clayey formations can be estimated. The anisotropic hydraulic conductivity has the potential to be used as an important input to the groundwater models.  相似文献   
18.
Hidden mineshafts located in urban areas are a significant problem across much of the industrialized world. Electrical resistivity tomography (ERT) is a technique that can detect and characterize hidden mine entries by exploiting resistivity contrasts between the shaft and surrounding materials, resulting from either compositional or structural differences. A case study is presented in which both surface and crosshole 3D ERT surveys are used to image a hidden backfilled mineshaft at a built environment site, situated on Carboniferous Lower Coal Measures strata in the UK.Backfilled shafts generally present the greatest challenge for detection using geophysical methods, as contrasts between the fill and bedrock are typically low compared to air or water-filled conditions. Nevertheless, the shaft in this case was identified by both the surface and crosshole 3D surveys. The shaft appeared as a strongly resistive anomaly relative to background materials, which we interpreted as resulting from the disturbed fabric of the fill materials rather than any significant compositional differences. The study highlighted the respective strengths and weaknesses of the surface and crosshole ERT methodologies for this type of problem. The surface survey, which covered a non-rectangular area to accommodate irregular boundaries and other physical obstructions, provided a relatively rapid means of investigating the study site. However, this method had a limited depth of investigation and was constrained in its coverage by the locations of buildings. By contrast, the 3D crosshole method was able to image the shaft to the level of the deepest borehole electrodes. Although crosshole ERT is too expensive to be used for large-scale mineshaft surveys, this study clearly demonstrates its suitability for targeted investigations where surface methods cannot be deployed, such as scanning beneath surface structures or in situations where it is essential for resolution to be maintained with depth.  相似文献   
19.
A groundwater recharge process of heterogeneous hard rock aquifer in the Moole Hole experimental watershed, south India, is being studied to understand the groundwater flow behaviour. Significant seasonal variations in groundwater level are observed in boreholes located at the outlet area indicating that the recharge process is probably taking place below intermittent streams. In order to localize groundwater recharge zones and to optimize implementation of boreholes, a geophysical survey was carried out during and after the 2004 monsoon across the outlet zone. Magnetic resonance soundings (MRS) have been performed to characterize the aquifer and measure groundwater level depletion. The results of MRS are consistent with the observation in boreholes, but it suffers from degraded lateral resolution. A better resolution of the regolith/bedrock interface is achieved using electrical resistivity tomography (ERT). ERT results are confirmed by resistivity logging in the boreholes. ERT surveys have been carried out twice—before and during the monsoon—across the stream area. The major feature of recharge is revealed below the stream with a decrease by 80% of the calculated resistivity. The time‐lapse ERT also shows unexpected variations at a depth of 20 m below the slopes that could have been interpreted as a consequence of a deep seasonal water flow. However, in this area time‐lapse ERT does not match with borehole data. Numerical modelling shows that in the presence of a shallow water infiltration, an inversion artefact may take place thus limiting the reliability of time‐lapse ERT. A combination of ERT with MRS provides valuable information on structure and aquifer properties respectively, giving a clue for a conceptual model of the recharge process: infiltration takes place in the conductive fractured‐fissured part of the bedrock underlying the stream and clayey material present on both sides slows down its lateral dissipation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
20.
Holocene rockwall retreat rates quantify integral values of rock slope erosion and talus cone evolution. Here we investigate Holocene rockwall retreat of exposed arctic sandstone cliffs in Longyeardalen, central Svalbard and apply laboratory‐calibrated electrical resistivity tomography (ERT) to determine talus sediment thickness. Temperature–resistivity functions of two sandstone samples are measured in the laboratory and compared with borehole temperatures from the talus slope. The resistivity of the higher and lower‐porosity sandstone at relevant borehole permafrost temperatures defines a threshold range that accounts for the lithological variability of the dominant bedrock and debris material. This helps to estimate the depth of the transition from higher resistivities of ice‐rich debris to lower resistivities of frozen bedrock in the six ERT transects. The depth of the debris–bedrock transition in ERT profiles is confirmed by a pronounced apparent resistivity gradient in the raw data plotted versus depth of investigation. High‐resolution LiDAR‐scanning and ERT subsurface information were collated in a GIS to interpolate the bedrock surface and to calculate the sediment volume of the talus cones. The resulting volumes were referenced to source areas to calculate rockwall retreat rates. The rock mass strength was estimated for the source areas. The integral rockwall retreat rates range from 0.33 to 1.96 mm yr–1, and are among the highest rockwall retreat rates measured in arctic environments, presumably modulated by harsh environmental forcing on a porous sandstone rock cliff with a comparatively low rock mass strength. Here, we show the potential of laboratory‐calibrated ERT to provide accurate estimates of rockwall retreat rates even in ice‐rich permafrost talus slopes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号