首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   37篇
  国内免费   54篇
测绘学   10篇
大气科学   41篇
地球物理   103篇
地质学   164篇
海洋学   17篇
天文学   3篇
综合类   13篇
自然地理   46篇
  2024年   4篇
  2023年   3篇
  2022年   11篇
  2021年   8篇
  2020年   12篇
  2019年   14篇
  2018年   20篇
  2017年   12篇
  2016年   13篇
  2015年   7篇
  2014年   24篇
  2013年   19篇
  2012年   11篇
  2011年   13篇
  2010年   7篇
  2009年   15篇
  2008年   18篇
  2007年   24篇
  2006年   25篇
  2005年   11篇
  2004年   11篇
  2003年   11篇
  2002年   6篇
  2001年   9篇
  2000年   7篇
  1999年   5篇
  1998年   8篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   5篇
  1993年   7篇
  1992年   11篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1978年   6篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有397条查询结果,搜索用时 203 毫秒
261.
强震区泥石流启动机制   总被引:2,自引:0,他引:2  
地震区的泥石流物源主要来源于滑坡、崩塌等松散体,具有结构疏松,密实度低,堆积时间短等特点,与非地震环境中的滑坡、崩塌堆积体的结构有所不同,堆积体的物理力学性质发生了改变,堆积体转换为泥石流所需的外界条件也相应的改变。以汶川地震区都江堰市龙池镇典型泥石流灾害为例,分析了地震滑坡、崩塌松散体的堆积形态和堆积体的应力环境。从静力学和动力学角度分析堆积体在强降雨条件下的起动特征,探讨了降雨作用形成的地表径流水深与堆积体失稳时的应力极限状态的关系。分析得出沟道岸坡滑坡堆积体发生侵蚀时的地表径流力为F=(τ1f-f1sinα)/cos(α-26.65),并建立径流水深与地表径流力的关系:H=F/4ρsgJ。分析在动量守恒条件下,堆积体单位时间内的侵蚀体积dV=dM/γs模型。为了进一步探讨在实际现场的应用,以汶川地震区都江堰市的水打沟泥石流为例,分析发生泥石流时的地表径流水深为0.011 m,其结论与实际调查结果基本一致。  相似文献   
262.
The Guadalupe Mountains in New Mexico and Texas are home to more than 300 caves. Caves have been formed within the Upper Permian Capitan carbonate platform and are oriented along two structural trends, one of which is parallel to the platform margin and the other of which is roughly perpendicular to it. Our recent studies of the Capitan Platform have identified syndepositional faults associated with growth monoclines and synclines in Slaughter Canyon, New Mexico, and these are also parallel to the platform margin. In this study, we demonstrate that syndepositional faults and folds are also present in Rattlesnake and Walnut Canyons, as much as 19 km along strike, and that they have exerted control on karstification of the Guadalupe Mountains from the Upper Permian until present.Three distinctive episodes of karst formation have been recognised in outcrops on the basis of karst-filling deposits and crosscutting relationships. The syndepositional “Phase 1 karst” was formed along syndepositional faults and fractures and is filled by platform-derived sediments. The burial “Phase 2 karst” is filled by post-Permian siliciclastics and is limited to the youngest syndepositional faults and fractures that penetrate the platform in the proximity of its terminal margin. Connectivity of these youngest faults and fractures to the platform top and the overlying stratigraphy is inferred to have controlled the distribution of the Phase 2 karst. The “Phase 3 karst” includes the present cave systems, which were mainly formed by sulphuric acid produced by mixing of fossil and fresh underground waters in conjunction with the uplift of the Guadalupe Mountains in the Late Tertiary, and have since been modified by vadose karst processes. The Phase 3 karst caves are not solely developed along syndepositional faults and fractures as the earlier karst palaeocaverns are, but also follow another, uplift-related, structural trend.Syndepositional folds, faults, and fractures in the Capitan Platform have influenced the shaping of the modern surface geomorphology of the Guadalupe Mountains by controlling drainage and, hence, erosion. Trellis drainage parallel to the platform margin is developed where syndepositional folds, faults, and fractures occur. The morphology of the trellis drainage varies systematically across the range in response to the character of the deformation structures and karst features along which the drainage channels have developed.  相似文献   
263.
The level of Kluane Lake, the largest lake in Yukon Territory, was lower than at present during most of the Holocene. The lake rose rapidly in the late seventeenth century to a level 12 m above present, drowning forest and stranding driftwood on a conspicuous high-stand beach, remnants of which are preserved at the south end of the lake. Kluane Lake fell back to near its present level by the end of the eighteenth century and has fluctuated within a range of about 3 m over the last 50 yr. The primary control on historic fluctuations in lake level is the discharge of Slims River, the largest source of water to the lake. We use tree ring and radiocarbon ages, stratigraphy and sub-bottom acoustic data to evaluate two explanations for the dramatic changes in the level of Kluane Lake. Our data support the hypothesis of Hugh Bostock, who suggested in 1969 that the maximum Little Ice Age advance of Kaskawulsh Glacier deposited large amounts of sediment in the Slims River valley and established the present course of Slims River into Kluane Lake. Bostock argued that these events caused the lake to rise and eventually overflow to the north. The overflowing waters incised the Duke River fan at the north end of Kluane Lake and lowered the lake to its present level. This study highlights the potentially dramatic impacts of climate change on regional hydrology during the Little Ice Age in glacierised mountains.  相似文献   
264.
To ascertain the influence of hydrological boundary conditions on acidity fluxes in lakes influenced by acid mine drainage, acidity budgets were developed for two sediments in areas of differential groundwater inflow (approx. 1 L m?2 d?1 and 10 L m?2 d?1). In both sediments iron was deposited as schwertmannite leading to iron(III) enriched sediments (3.9…6.2 mmol g?1, referred to dry weight). Compared to the surface water, the inflowing groundwater had higher pH (4.5 vs. 3), ferrous iron (6…20 mmol L?1 vs. 0.8…2.0 mmol L?1), and sulfate (5…60 mmol L?1 vs. 8…13 mmol L?1) concentrations. The inflow changed the sediment pore water chemistry and triggered a further increase in pH to above 5.5. In both sediments acidity generation in the surface water (10…30 mol m?2 a?1) strongly prevailed over acidity consumption in the sediments (> ?0.6 mol m?2 a?1). With advective groundwater inflow, however, more acidity was consumed due to TRIS formation (?0.12 mol m?2 a?1 vs. ?0.017 mol m?2 a?1), iron carbonate burial (upper estimate: ?0.14 mol m?2 a?1 vs. ?0.022 mol m?2 a?1), and unspecific ferrous iron retention (?0.39 mol m?2 a?1 vs. ?0.08 mol m?2 a?1). Also, less acidity was generated due to schwertmannite transformation (?2.4 mol m?2 a?1 vs. ?0.11 mol m?2 a?1). The acidity balance of internal processes in the sediment with groundwater inflow was negative, whereas it was positive in the other sediment. The study demonstrates that in acidic and iron rich lakes the hydrological boundary conditions strongly affect geochemical processes as subsumed in acidity fluxes.  相似文献   
265.
In Lorraine, flooding of the iron mines leads to a degradation of groundwater quality. Based on a global approach, a numerical simulator has been built that can reproduce and predict the evolution of water quality at the overflow point of the mining basin. In order to specify the spatial distribution of these pollutant concentrations, a new model has been developed. The basin is represented as a network of homogeneous reservoirs. Although encouraging, the results show the need to specify the spatial organisation of water flow in order to reproduce the pollutant concentrations in the different monitored wells. To cite this article: P. Collon et al., C. R. Geoscience 337 (2005).  相似文献   
266.
The eastern Ecuadorian Andes appear as a fold-and-thrust belt adjacent to a continental foredeep represented by one of the world's largest tropical alluvial megafans, the Pastaza megafan, debouching into the Amazonian lowland. The apex of the Pliocene–Pleistocene megafan situated in the present-day wedge top (Subandean Zone) has been cut by an erosion surface, the western part of which has been uplifted of 500 m along the frontal thrust, forming a poorly dissected plateau, the Mera plateau. This erosion surface erased most of the previous fluvial landscape but preserved a large thrust-related anticlinal hinge deforming less erodible underlying strata, the Mirador fold and smaller-sized anticlines. This surface has been then incised by two antecedent major rivers, the Pastaza and the Napo, and few tributaries. The plateau edge is marked by a series of large scale gently sloping landslides clustered along a 70 km long concave eastward line associated with the frontal thrust fault. The newly formed immature rivers issued from the landslides or sourced within east-dipping remnants of the erosion surface downstream of the landslide line constitute the greatest part of the streams feeding the Ecuadorian Amazonian basin. At 70 to 100 km from the landslide line, the drainage abruptly changes from highly immature to mature with a well-defined hinge line representing the outer limit of landslide and tectonic control. The diversions of the Pastaza River indicate ongoing fold growth since at least the late Pleistocene in the Eastern Cordillera, and the early Holocene in the Mera plateau. The preserved terraces of the Pastaza valley are all degradational and are ascribed to periods of tectonic (seismic) activity alternating with periods of tectonic quiescence or decreased seismic activity rather than to climatic events. 14C dating of the plateau erosion surface and of the upper Pastaza terraces indicates that the minimum average incision rate since 18,000 years BP varies locally in the upper Pastaza valley from 0.5 to 0.67 cm year−1 , increasing from 18,000 years BP to now. A comparison of these incision rates with fold-and-thrust fault uplift rates indicates that incision in the upper Pastaza valley was a result of rapid uplift (up to 1 cm year−1) along the Mirador fold-and-thrust which caused a restoration of the local equilibrium profile of the upper reach, combined with smaller local fault uplift along the westernmost thrust faults. The uplift of the whole Mera plateau with respect to the upper Amazonian basin gives a minimum average uplift rate of 2.8 cm year−1 since 18,000 years BP. The overall uplift of the Mera plateau and the Eastern Cordillera is likely to have been caused by a regional-scale low angle thrust ramp emerging as the frontal thrust fault.  相似文献   
267.
The focus of this paper is to relate fundamental statistical properties of landforms and drainage networks to models that have been developed in statistical physics. Relevant properties and models are reviewed and a general overview is presented. Landforms and drainage networks are clearly complex, but well-defined scaling laws are found. Coastlines, topography contours, and lakes are classic self-similar fractals. The height of topography along a linear track is well approximated as a Brownian walk, a self-affine fractal. This type of behavior has also been found in surface physics, for example the surface roughness of a fracture. An applicable model is the Langevin equation, the heat equation with a stochastic white-noise driver. This model also reproduces the statistics of sediment deposition. Drainage networks were one of the original examples of self-similar fractal trees. An important advance in quantifying the structure of drainage networks is the application of the Tokunaga fractal side-branching statistics. A classic problem in statistical physics is the diffusion-limited aggregation. The resulting tree like structures have been shown to also satisfy the Tokunaga statistics. A modified version of the diffusion-limited aggregation model reproduces the statistics of drainage networks. It is concluded that the models developed in statistical physics have direct applicability to the fundamental problems in geomorphology.  相似文献   
268.
Photogrammetric analysis of aerial photographs is used to investigate morphological changes in two large landslides located adjacent to the active Marathias normal fault along the Gulf of Corinth, Greece. This E–W trending fault intersects at almost right angles a series of west-verging and east-dipping thrust faults, and has a clear geomorphic expression. The fault's structural signature, such as the trace length, displacement, segmentation, and scarp freshness resembles other normal faults within the Gulf of Corinth. Along this fault we mapped a series of landslides that are mainly concentrated at the near tip areas. Two of them are hosted in the damage zone formed by the intersecting normal and reverse faults. The Marathias and Sergoula landslides show a significant geomorphic evolution on aerial photographs from 1945 to 1991.

Evolution of landslides in the study area appears to be correlated with two earthquake clusters that drive mass wasting in the order of 106 m3, significant drainage adjustment, and triggering of post-landslide river incision. We infer the following process sequence for these presumably earthquake-triggered landslides in the region: eroded material in Marathias landslide and reactivation of movement within the main body of the Sergoula landslide were observed in 1969 aerial photographs. Both landslides are deep-seated rotational rockslides. Obstruction or abandonment of channels due to the landslides establishes river incision and a dramatic increase of the rate of fan-delta progradation in the order of 1 m/yr. These large landslides are related to strong (M > 6.5) earthquakes concentrated along faults, and their reactivation period is almost a century, based on seismological or paleoseismological analyses.  相似文献   

269.
Although, the Eastern Desert of Egypt forms about 22% of the surface area of the country, the area is undeveloped due to the limited availability of water. The morphologic units of the Eastern Desert consist of a number of drainage basins covering about 147,820 km2 (66.5% of the total surface area of the Eastern Desert). The basins drain the occasional rainwater, either towards the Nile Valley or to the Red Sea, causing flood hazards. The availability of water from the hydrologic systems of these basins could be improved by constructing runoff controlling systems in these areas (e.g. dykes and partially effective dams), which could save and make use of a considerable amount of water. The groundwater resources in the Eastern Desert can be divided into four main water-bearing units: the fractured crystalline Pre-Cambrian aquifer, the Nubian sandstone aquifer, the fractured limestone and sandstone aquifer and the Quaternary aquifer. The most productive aquifer is the Nubian sandstone while the fractured limestone and sandstone (Miocene) are only productive along the eastern part of the desert. The Quaternary aquifer occurs along the major dry washes (wadis) and is considered of limited potential as it is recharged mainly from the occasional rainfall. Detailed assessment of these aquifers should be carried out locally for further development of the area.
Resumen Aunque el Desierto Oriental de Egipto constituye alrededor del 22% de la superficie del país, esta área no se encuentra desarrollada por causa de la escasez de agua. Las unidades morfológicas del Desierto Oriental consisten de un número de cuencas de drenaje que cubren alrededor de 147,820 km2 (66.5% del área superficial total del Desierto Oriental). Estas cuencas drenan las aguas lluvias ocasionales, bien hacia el Valle del Nilo o hacia el Mar Rojo, causando amenazas de inundación. La disponibilidad de agua a partir de los sistemas hidrológicos de estas cuencas, puede ser mejorada al construir sistemas de control de escorrentía allí (Ej. Diques y presas de efectividad parcial), las cuales podrían almacenar y permitir el uso de una cantidad considerable de agua. Los recursos de agua subterránea en el Desierto Oriental, pueden dividirse en cuatro unidades principales portadoras de agua: El acuífero fracturado cristalino Pre – Cámbrico, el acuífero de la Arenisca de Nubia, el acuífero de arenisca y caliza fracturadas y el acuífero Cuaternario. El acuífero más productivo es la arenisca de Nubia, mientras que la arenisca y caliza fracturadas (Mioceno), son productivas únicamente a lo largo de la parte oriental del desierto. El acuífero Cuaternario se encuentra a lo largo de las corrientes intermitentes mayores (Wadis) y se le considera de potencial limitado por ser recargado principalmente a partir de lluvia ocasional. Una evaluación detallada de estos acuíferos debe llevarse a cabo localmente, para el desarrollo adicional de esta área.

Résumé Bien que le Désert Est occupe 22% de la surface de lEgypte, la région est sousdeveloppée à cause de la ressource en eau limitée. Les unités morphologiques consistent en des bassins drainant qui couvrent une surface de 147,820 km2 ,représentant 66.6% de la surface du Désert Est. Les bassins drainent les plues intermittentes vers la vallée du Nil ou vers la Mer Rouge en provocant des inondations. On peut augmenter la ressource en eau dans cette région en réalisant des systèmes de contrôle de ruissellements (des digues...) qui peuvent sauver et utiliser un volume considérable deau. La ressource en eau souterraine du Désert Est est cantonnée dans quatre grandes structures: l› aquifère fracturé cristallin Précambrien, l› aquifère gréseux Nubien, l› aquifère calcaire et gréseux et l› aquifère quaternaire. Le plus productif est l› aquifère gréseux Nubien tendis que les calcaire et les grèses dage miocène sont productives seulement dans la partie est du désert. L› aquifère quaternaire se trouve au long des oueds sèches et on considéré quil a un potentiel limité, étant rechargé seulement par les plues intermittentes. Pour le futur développement de la région il est nécessaire une évaluation détaillée, à léchelle locale de ces aquifères.
  相似文献   
270.
A track across a burnt grass swale was used intensively on the Jabiluka Mineral Lease (located adjacent to Kakadu National Park in the seasonally wet tropics of the Northern Territory, Australia) for a short time period during the 1998 dry season. Repeated vehicle passes over the burnt grass increased soil bulk density and locally disrupted the root and algal mat, lowering the critical shear stress for sediment transport. Overland flow during the next wet season was above average and eroded eleven discontinuous, flow‐aligned scour holes in the wheel ruts where the track crossed grassed sandy swales. Although the site was burnt again during the next dry season, the scour holes did not coalesce during the second wet season, which was wetter than the previous one, because infrequent traffic bypassed the eroded section allowing grass to re‐establish. Scour holes on vehicle tracks in the Kakadu region are an intermediate but reversible stage in the development of gullies in grassed swales. Treatment of scour holes by soil conservation works may prevent gully formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号