首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   8篇
  国内免费   20篇
大气科学   19篇
地球物理   17篇
地质学   9篇
海洋学   51篇
天文学   6篇
综合类   4篇
自然地理   7篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   13篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   14篇
  2007年   6篇
  2006年   5篇
  2004年   1篇
  2003年   3篇
  2002年   8篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1994年   4篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1985年   2篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
11.
12.
Frontal upwelling is an important phenomenon in summer in the Yellow Sea (YS) and plays an essential role in the distribution of nutrients and biological species. In this paper, a three-dimensional hydrodynamic model is applied to investigate the characteristics and influencing factors of frontal upwelling in the YS. The results show that the strength and distribution of frontal upwelling are largely dependent on the topography and bottom temperature fronts. The frontal upwelling in the YS is stronger and narrower near the eastern coast than near the western coast due to the steeper shelf slope. Moreover, external forcings, such as the meridional wind speed and air temperature in summer and the air temperature in the preceding winter and spring, have certain influences on the strength of frontal upwelling. An increase in air temperature in the previous winter and spring weakens the frontal upwelling in summer; in contrast, an increase in air temperature in summer strengthens the frontal upwelling. When the southerly wind in summer increases, the upwelling intensifies in the western YS and weakens in the eastern YS. The air temperature influences the strength of upwelling by changing the baroclinicity in the frontal region. Furthermore, the meridional wind speed in summer affects frontal upwelling via Ekman pumping.  相似文献   
13.
A two‐dimensional (2D) finite‐difference shallow water model based on a second‐order hybrid type of total variation diminishing (TVD) approximate solver with a MUSCL limiter function was developed to model flooding and inundation problems where the evolution of the drying and wetting interface is numerically challenging. Both a minimum positive depth (MPD) scheme and a non‐MPD scheme were employed to handle the advancement of drying and wetting fronts. We used several model problems to verify the model, including a dam break in a slope channel, a dam break flooding over a triangular obstacle, an idealized circular dam‐break, and a tide flow over a mound. Computed results agreed well with the experiment data and other numerical results available. The model was then applied to simulate the dam breaking and flooding of Hsindien Creek, Taiwan, with the detailed river basin topography. Computed flooding scenarios show reasonable flow characteristics. Though the average speed of flooding is 6–7 m s?1, which corresponds to the subcritical flow condition (Fr < 1), the local maximum speed of flooding is 14·12 m s?1, which corresponds to the supercritical flow condition (Fr ≈ 1·31). It is necessary to conduct some kind of comparison of the numerical results with measurements/experiments in further studies. Nevertheless, the model exhibits its capability to capture the essential features of dam‐break flows with drying and wetting fronts. It also exhibits the potential to provide the basis for computationally efficient flood routing and warning information. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
14.
Shocks propagating in the interstellar medium (ISM) play an important role in the life of molecular clouds. Through a theoretical study of interaction between clouds and shocks we can understand, for example, the density distribution of observed molecular clouds and the first steps of star formation. The only way to study of interaction in detail is via a numerical hydrodynamical simulation. In this paper we present the first results of a hydrocode which is able to follow the processes after the collision between the cloud and shock front.Our main theoretical result is that the chemical processes (e.g. H2 dissociation) can affect the dynamical processes significantly. Global parameters of the cloud are calculated for the comparision of the simulation and the observations.  相似文献   
15.
The effect of a time-varying radiation flux incident on an ionization front on the generation of ionization-shock front oscillations in the interstellar medium is analyzed analytically and numerically. We take into account both variations in the flux of ionizing radiation directly from the source that produces the ionization front and the absorption of energetic photons by the post-front plasma. Based on our calculations, we show that the time dependence of the radiation flux can be an additional factor (apart from small inhomogeneities in the interstellar medium) that contributes to the amplification of oscillations and to the kinetic energy input to the observed turbulent motions in H II regions.  相似文献   
16.
We numerically model the formation and acceleration of a neutral gas shell as an ionization-shock front propagates in a spherical cloud by taking into account the photoionization and radiative heating of the gas, the spectral radiative transfer. We suggest and implement an approximation of the cooling function that allows calculations to be performed in a wide range of gas ionization fractions and temperatures. The total mass, average velocity, and thickness of the shell have been determined. The results are compared with approximate formulas known in the literature. Based on the parameters of the shell found, we estimate its acceleration, characteristic scales, and the growth times of unstable perturbations. We analyze the influence of the cloud particle density, cloud radius, stellar temperature, and radiation spectrum on the integrated characteristics of the neutral gas in the layer between the ionization and shock fronts. The distribution of matter in the shell and its thickness are shown to differ significantly from those used in approximate models.  相似文献   
17.
18.
Abstract

The acceptability of zero potential vorticity models as approximations for natural systems of small, but finite, potential vorticity is studied for bounded frontal flows of arbitrary profile. It is demonstrated that all (infinitely) long-wave solutions of the zero potential vorticity front are asymptotic limits for some (not necessarily long-wave) solutions of the small potential vorticity front. In contrast, for downstream-varying solutions there is no simple way of demonstrating this property. These findings suggest that the use of zero potential vorticity models should be carefully examined in other, non-frontal, problems as well. Finally we show that the longwave solutions of the zero potential vorticity flow are at most neutral (quasi-stable).  相似文献   
19.
The responses of coastal upwelling to different magnitudes of wind stress over a narrow and a wide shelf are studied using a 3-D primitive equation numerical model. The results show that the position of the upwelling front depends on both the strength and the duration of the wind forcing. The comparison between different shelf widths shows that wide shelf will limit the cold water intrusion, so that the corresponding decrease in sea surface temperature is less compared to narrow shelves. Besides, the difference between hydrostatic and nonhydrostatic model results shows that nonhydrostatic effects will enhance the growth of surface meandering, and can be more pronounced near steep fronts. Although difference does exist, our results show that the nonhydrostatic effects are very small at least in this idealized study case.  相似文献   
20.
本文为探索静止锋位于遵义上空不同位置时,各城镇精细化预报考核站点当日高温的规律,通过普查2009至2020年12月到次年2月间14时、17时地面天气图,并结合探空资料、卫星云图等资料,筛选出云贵准静止锋(以下简称为静止锋)位于遵义境内时的所有个例,分型统计不同类型个例对应的白天最高温、EC2m温度预报数据,EC细网格850hPa温度,计算不同温度预报方法下的准确率,并分析是否可继续订正。结果表明:(1)离锋面越远,温度的预报准确率越高,基于客观预报方法的可订正性越强,实际业务中可以参考本文分析得到的各站点数据。(2)当静止锋呈Ⅰ1型时,遵义市西部站点用EC预报当日20时的850hPa温度进行预报(以下简称850hPa温度预报方法)准确率较高,北部、东部站点可用EC2m最高温度进行订正(以下简称2m温度订正方法)。(3)当静止锋呈Ⅰ2型时,可以同时参考850hPa温度预报方法和2m温度订正方法,订正后准确率高。(4)当静止锋为Ⅱ2型时,对于离锋面较远的东部、南部可着重使用2m温度订正方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号