首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4772篇
  免费   627篇
  国内免费   590篇
测绘学   66篇
大气科学   220篇
地球物理   1297篇
地质学   1333篇
海洋学   734篇
天文学   1720篇
综合类   147篇
自然地理   472篇
  2024年   8篇
  2023年   31篇
  2022年   98篇
  2021年   115篇
  2020年   121篇
  2019年   152篇
  2018年   116篇
  2017年   122篇
  2016年   136篇
  2015年   129篇
  2014年   184篇
  2013年   198篇
  2012年   120篇
  2011年   215篇
  2010年   166篇
  2009年   365篇
  2008年   373篇
  2007年   390篇
  2006年   413篇
  2005年   313篇
  2004年   271篇
  2003年   286篇
  2002年   239篇
  2001年   198篇
  2000年   250篇
  1999年   227篇
  1998年   200篇
  1997年   99篇
  1996年   88篇
  1995年   88篇
  1994年   70篇
  1993年   49篇
  1992年   36篇
  1991年   15篇
  1990年   31篇
  1989年   14篇
  1988年   10篇
  1987年   10篇
  1986年   6篇
  1985年   9篇
  1984年   5篇
  1983年   2篇
  1982年   6篇
  1981年   6篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1954年   3篇
排序方式: 共有5989条查询结果,搜索用时 15 毫秒
81.
The sea floor of Fram Strait, the over 2500 m deep passage between the Arctic Ocean and the Norwegian-Greenland Sea, is part of a complex transform zone between the Knipovich mid-oceanic ridge of the Norwegian-Greenland Sea and the Nansen-Gakkel Ridge of the Arctic Ocean. Because linear magnetic anomalies formed by sea-floor spreading have not been found, the precise location of the boundary between the Eurasian and the North American plate is unknown in this region. Systematic surveying of Fram Strait with SEABEAM and high resolution seismic profiling began in 1984 and continued in 1985 and 1987, providing detailed morphology of the Fram Strait sea floor and permitting better definition of its morphotectonics. The 1984 survey presented in this paper provided a complete set of bathymetric data from the southernmost section of the Svalbard Transform, including the Molloy Fracture Zone, connecting the Knipovich Ridge to the Molloy Ridge; and the Molloy Deep, a nodal basin formed at the intersection of the Molloy Transform Fault and the Molloy Ridge. This nodal basin has a revised maximum depth of 5607 m water depth at 79°8.5N and 2°47E.  相似文献   
82.
Salt-water inflows into the Baltic Sea are important events for renewing the deep and bottom waters of the deep basins of the Baltic Sea. These events occur only at irregular intervals. The last strong event was in January 1993 followed by minor inflows in winter 1993/1994. As a result of these inflows, the deep water of the central Baltic basins was completely renewed.Based on extensive observations of polycyclic aromatic hydrocarbons (PAHs) in water, fluffy layer material and surface sediments between 1992 and 1998, the transformation of PAHs and the modification of their distribution in the Baltic deep water is discussed in connection with the spreading of the inflowing highly saline and oxygen-rich water along its pathway from the sills into the central basins. In the course of the inflows in 1993/1994, the PAH concentration in the deep water of the different basins increased significantly. The concentrations were elevated, at least by a factor of 2 and as much as seven to eight times (for the four-ring PAHs) compared to the previous and the following years. Two hypotheses for the causes were discussed: the inflowing salt water may have entrained more highly polluted surface water in the western Baltic Sea, or it may have entrained contaminated fluffy layer material or sediment particles along the route of transport.  相似文献   
83.
水下滑翔器的运动建模与分析   总被引:5,自引:2,他引:5  
介绍了水下滑翔器的工作机理,对其沉浮阶段的滑翔过程进行了动力学分析,推导了滑翔器在垂直剖面上的动力学方程。论文深入分析了水下滑翔器稳态时的运动规律,以水下滑翔器试验模型为例,推导了其稳态运动参数,通过线性化与适当的简化,得到模型在垂直剖面上的运动状态方程,讨论了系统的可控性与可观测性,为水下滑翔器系统的开发设计和控制提供了理论依据,具有重要的指导意义。  相似文献   
84.
The biology, population dynamics, and production of Talorchestia brito were studied at two sandy beaches located on the Atlantic (Portugal) and on the Mediterranean (Tunisia) coasts, respectively. The seasonal variation in abundance and the overall densities were similar in both populations. Reproduction occurred from February to September in the Atlantic, and from March to early November in the Mediterranean. The sex ratio was male biased in the Atlantic, and female biased in the Mediterranean. Based on data from the Atlantic population, both abundance and the proportion of reproductive females were positively correlated with temperature, while the proportion of juveniles in the population was positively correlated with temperature and sediment moisture. On average, individuals from the Atlantic were larger than the ones from the Mediterranean. Life span was estimated at six to nine months in the Atlantic, and five to eight months in the Mediterranean. Talorchestia brito was shown to be a semiannual species, with iteroparous females producing two broods per year, and exhibited a bivoltine life cycle. The minimum age required for males' and females' sexual differentiation and for female sexual maturation was shorter in the Mediterranean. Growth production (P) was estimated at 0.19 g m−2 y−1 ash free dry weight (AFDW; 4.3 kJ m−2 y−1) in the Atlantic population, and 0.217 g m−2 y−1 AFDW (4.9 kJ m−2 y−1) in the Mediterranean one. Elimination production (E) was estimated at 0.35 g m−2 y−1 AFDW (7.9 kJ m−2 y−1) in the Atlantic, and 0.28 g m−2 y−1 AFDW (6.3 kJ m−2 y−1) in the Mediterranean. The average annual biomass ( ) (standing stock) was estimated at 0.032 g m−2 in the Atlantic beach, and 0.029 g m−2 in the Mediterranean one, resulting, respectively, in ratios of 5.9 and 7.5 and ratios of 10.8 and 9.6. Like other talitrids, T. brito exhibited geographic variation in morphometrical characteristics, sex ratio, growth rates, life span, and reproduction period, with the Atlantic population presenting a slower life history.  相似文献   
85.
86.
This paper describes the extension of a fluid-flow simulations method to capture the free surface evolution around a full-scale Tension Leg Platform (TLP). The focus is on the prediction of the resulting hydrodynamic loading on the various elements of the TLP in turbulent flow conditions and, in particular, on quantifying the effects of the free surface distortion on this loading. The basic method uses finite-volume techniques to discretize the differential equations governing conservation of mass and momentum in three dimensions. The time-averaged forms of the equations are used, and the effects of turbulence are accounted for by using a two-equation, eddy-viscosity closure. The method is extended here via the incorporation of surface-tracking algorithm on a moving grid to predict the free-surface shape. The algorithm was checked against experimental measurements from two benchmark flows: the flow over a submerged semi-circular cylinder and the flow around a floating parabolic hull. Predictions of forces on a model TLP were then obtained both with and without allowing for the deformation of the free surface. The results suggest that the free surface effects on the hydrodynamic loads are small for the values of Froude number typically encountered in offshore engineering practice.  相似文献   
87.
This study considers an important biome in aquatic environments, the subsurface ecosystem that evolves under low mixing conditions, from a theoretical point of view. Employing a conceptual model that involves phytoplankton, a limiting nutrient and sinking detritus, we use a set of key characteristics (thickness, depth, biomass amplitude/productivity) to qualitatively and quantitatively describe subsurface biomass maximum layers (SBMLs) of phytoplankton. These SBMLs are defined by the existence of two community compensation depths in the water column, which confine the layer of net community production; their depth coincides with the upper nutricline. Analysing the results of a large ensemble of simulations with a one-dimensional numerical model, we explore the parameter dependencies to obtain fundamental steady-state relationships that connect primary production, mortality and grazing, remineralization, vertical diffusion and detrital sinking. As a main result, we find that we can distinguish between factors that determine the vertically integrated primary production and others that affect only depth and shape (thickness and biomass amplitude) of this subsurface production layer. A simple relationship is derived analytically, which can be used to estimate the steady-state primary productivity in the subsurface oligotrophic ocean. The fundamental nature of the results provides further insight into the dynamics of these “hidden” ecosystems and their role in marine nutrient cycling.  相似文献   
88.
The mixing agents and their role in the dynamics of a shallow fjord are elucidated through an Eulerian implementation of artificial tracers in a three-dimensional hydrodynamic model. The time scales of vertical mixing in this shallow estuary are short, and the artificial tracers are utilized in order to reveal information not detectable in the temperature or salinity fields. The fjord's response to external forcing is investigated through a series of model experiments in which we quantify vertical mixing, transport time scales of fresh water runoff and estuarine circulation in relation to external forcing.Using age tracers released at surface and bottom, we quantify the time scales of downward mixing of surface water and upward mixing of bottom water. Wind is shown to be the major agent for vertical mixing at nearly all depth levels in the fjord, whereas the tide or external sea level forcing is a minor agent and only occasionally more important just close to the bottom. The time scale of vertical mixing of surface water to the bottom or ventilation time scale of bottom water is estimated to be in the range 0.7 h to 9.0 days, with an average age of 2.7 days for the year 2004.The fjord receives fresh water from two streams entering the innermost part of the fjord, and the distribution and age of this water are studied using both ageing and conservative tracers. The salinity variations outside this fjord are large, and in contrast to the salinity, the artificial tracers provide a straight forward analysis of river water content. The ageing tracer is used to estimate transport time scales of river water (i.e. the time elapsed since the water left the river mouth). In May 2004, the typical age of river water leaving the fjord mouth is 5 days. As the major vertical mixing agent is wind, it controls the estuarine circulation and export of river water. When the wind stress is set to zero, the vertical mixing is reduced and the vertical salinity stratification is increased, and the river water can be effectively exported out of the fjord.We also analyse the river tracer fields and salinity field in relation to along estuary winds in order to detect signs of wind-induced straining of the along estuary density gradient. We find that events of down estuary winds are primarily associated with a reduced along estuary salinity gradient due to increased surface salinity in the innermost part of the fjord, and with an overall decrease in vertical stratification and river water content at the surface. Thus, our results show no apparent signs of wind-induced straining in this shallow fjord but instead they indicate increased levels of vertical mixing or upwelling during down estuary wind events.  相似文献   
89.
A time series of zooplankton sampling carried out at Station 18 off Concepción (36°S, 73°W) from August 2002 to December 2003 allowed the study of annual life cycles of the copepods Calanus chilensis and Centropages brachiatus in association with environmental variability in the coastal upwelling zone. Changes in the abundance of eggs, nauplii, and copepodids were assessed from samples taken at a mean time interval of ca. 20 days. Upwelling variability in near-surface waters was reflected in seasonal changes in salinity, water column stratification, and oxycline depth, as well as a weak seasonal signal in sea surface temperature (1-2 °C). Both copepods exhibited similar life cycles, characterized by continuous reproduction throughout the year. Estimates of generation times, as a function of temperature, were 25-30 days for C. chilensis and 27-35 days for C. brachiatus, predicting about 12 and 10 generations a year, respectively. These estimates were consistent with reproduction pulses observed in the field. It was thus suggested that copepods may grow under non-limiting food conditions in this upwelling area. However, despite continuous reproduction, there were abrupt changes in population sizes along with the disappearance of early naupliar and copepodid stages taking place even during the upwelling season (spring/summer). These changes were attributed to sudden increases in mortality taking place in spring or early summer, after which the populations remained at low levels through the fall and winter. It is thus suggested that, in addition to variability in the physical environment, biological interactions modulating changes in copepod mortality should be considered for understanding copepod life cycles in highly productive upwelling systems.  相似文献   
90.
An applied Fourier transform computation for the hydrodynamic wave-resistance coefficient is shown, oriented to potential flows with a free surface and infinity depth. The presence of a ship-like body is simulated by its equivalent pressure disturbance imposed on the un-perturbed free surface, where a linearized free surface condition is used. The wave-resistance coefficient is obtained from the wave-height downstream. Two examples with closed solutions are considered: a submerged dipole, as a test-case, and a parabolic pressure distribution of compact support. In the three dimensional case, a dispersion relation is included which is a key resource for an inexpensive computation of the wave pattern far downstream like fifteen ship-lengths.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号