首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   5篇
  国内免费   1篇
测绘学   6篇
大气科学   2篇
地球物理   11篇
地质学   5篇
天文学   1篇
综合类   3篇
自然地理   21篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   5篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2001年   2篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
  1992年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有49条查询结果,搜索用时 446 毫秒
11.
梅再美 《中国岩溶》2003,22(4):293-298
贵州喀斯特地区生态环境脆弱,山高坡陡,水土流失严重,加之土层浅薄,土壤总量少,基岩裸露面积大,贮水能力低,以及岩石裂隙渗漏性强等特殊的喀斯特地表结构和水文地质条件,形成了湿润气候背景下的临时性干旱— — 喀斯特干旱,地表严重缺水,农业和人畜用水困难,从而加速了生态环境的严重退化。本文阐述了贵州喀斯特脆弱生态环境的现状与特点,提出了实施陡坡退耕还林还草的途径与对策,以及大力发展节水型混农林业的退耕模式。   相似文献   
12.
The invertebrates of the arid interior of Western Australia have been little studied. As part of a project investigating the effect of wild fire on vegetation in the Gibson Desert, ant species were also collected and analysed. A total of 71 ant species was identified from six replicated 250 m2 plots in an area within the Gibson Desert Nature Reserve. The six sites were established in recently burnt and long unburnt areas of three main vegetation types: Triodia basedowii grassland, Triodia shinzii grassland, and Acacia aneura woodland. Twenty-nine ant species occurred exclusively in recently burnt sites, 16 species were exclusive to the long unburnt sites and the remaining 26 occurred in both site types. Functional group analyses revealed a predominance of Subordinate Camponotini and Opportunists at the long unburnt sites whereas Dominant Dolichoderinae and Generalist Myrmicinae were more common in the recently burnt sites. Ant species distribution demonstrated only a slight difference between recently burnt and long unburnt sites (P=0.1), although vegetation structure was significantly different in terms of both burn and vegetation type (P<0.05). While there are no definite trends for the impact of fire on ants in this study, the findings provide further insight into the effect of fire on invertebrates and suggest that a burning mosaic be considered as part of a management program for arid ecosystems.  相似文献   
13.
A new packrat midden chronology from Playas Valley, southwestern New Mexico, is the first installment of an ongoing effort to reconstruct paleovegetation and paleoclimate in the U.S.A.–Mexico Borderlands. Playas Valley and neighboring basins supported pluvial lakes during full and/or late glacial times. Plant macrofossil and pollen assemblages from nine middens in the Playas Valley allow comparisons of two time intervals: 16,000–10,000 and 4000–0 14C yr B.P. Vegetation along pluvial lake margins consisted of open pinyon–juniper communities dominated by Pinus edulis, Juniperus scopulorum, Juniperus cf. coahuilensis, and a rich understory of C4 annuals and grasses. This summer-flowering understory is also characteristic of modern desert grassland in the Borderlands and indicates at least moderate summer precipitation. P. edulis and J. scopulorum disappeared or were rare in the midden record by 10,670 14C yr B.P. The late Holocene is marked by the arrival of Chihuahuan desert scrub elements and few departures as the vegetation gradually became modern in character. Larrea tridentata appears as late as 2190 14C yr B.P. based on macrofossils, but may have been present as early as 4095 14C yr B.P. based on pollen. Fouquieria splendens, one of the dominant desert species present at the site today, makes its first appearance only in the last millennium. The midden pollen assemblages are difficult to interpret; they lack modern analogs in surface pollen assemblages from stock tanks at different elevations in the Borderlands.  相似文献   
14.
15.
The characteristics of stemflow were observed in a tall stewartia (Stewartia monadelpha) deciduous forest on a hillslope in central Japan, revealing new findings for a previously unreported type of deciduous forest. Using 2-year observations of 250 rainfall events, we analyzed seasonal and spatial variations in stemflow for several trees, and applied additional data sets of throughfall and plant area index (PAI) to produce a rough estimate of seasonal variations in rainfall redistribution processes and canopy architecture for a single tree. Compared to previous findings for other deciduous tree species, the ratios of throughfall, stemflow, and interception to open-area rainfall obviously varied with PAI changes for tall stewartia. Meteorological conditions of rainfall amount, rainfall intensity, wind speed, and wind direction had little effect on stemflow generation, which was mainly affected by variation in canopy architecture. Three novel characteristics of stemflow were identified for several tall stewartia trees. First, the yearly stemflow ratio at the forest-stand level for tall stewartia (12%) was high compared to previous findings on beech and oak stands, indicating tall stewartia has considerably high potential to generate a great amount of stemflow. Second, stemflow tended to be 1.3–2.0 times greater in the leafed period than in the leafless period. Third, the amount of stemflow was 12–132 times greater on the downslope side of the stem than on the upslope side. It likely caused by the uneven area between the upslope and downslope sides of the canopy and by asymmetrical stemflow pathways between the upslope and downslope sides of the trunk due to downslope tilting of the tree trunk.  相似文献   
16.
The rangeland hydrology and erosion model (RHEM) is a new process‐based model developed by the USDA Agricultural Research Service. RHEM was initially developed for functionally intact rangelands where concentrated flow erosion is minimal and most soil loss occurs by rain splash and sheet flow erosion processes. Disturbance such as fire or woody plant encroachment can amplify overland flow erosion by increasing the likelihood of concentrated flow formation. In this study, we enhanced RHEM applications on disturbed rangelands by using a new approach for the prediction and parameterization of concentrated flow erosion. The new approach was conceptualized based on observations and results of experimental studies on rangelands disturbed by fire and/or by tree encroachment. The sediment detachment rate for concentrated flow was calculated using soil erodibility and hydraulic (flow width and stream power) parameters. Concentrated flow width was calculated based on flow discharge and slope using an equation developed specifically for disturbed rangelands. Soil detachment was assumed to begin with concentrated flow initiation. A dynamic erodibility concept was applied where concentrated flow erodibility was set to decrease exponentially during a run‐off event because of declining sediment availability. Erodibility was estimated using an empirical parameterization equation as a function of vegetation cover and surface soil texture. A dynamic partial differential sediment continuity equation was used to model the total detachment rate of concentrated flow and rain splash and sheet flow. The enhanced version of the model was evaluated against rainfall simulation data for three different sites that exhibit some degree of disturbance by fire and/or by tree encroachment. The coefficient of determination (R2) and Nash–Sutcliffe efficiency were 0.78 and 0.71, respectively, which indicates the capability of the model using the new approach for predicting soil loss on disturbed rangeland. By using the new concentrated flow modelling approach, the model was enhanced to be a practical tool that utilizes readily available vegetation and soil data for quantifying erosion and assessing erosion risk following rangeland disturbance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
17.
Water and energy balance interactions with vegetation in mountainous terrain are influenced by topographic effects, spatial variation in vegetation type and density, and water availability. This is the case for the mountainous areas of northern Portugal, where ancestral irrigated meadows (lameiros) are a main component of a complex vegetation mosaic. The widely used surface energy balance model METRIC was applied to four Landsat images to determine the spatial and temporal distribution of the energy balance terms in the identified land cover types (LCT). A discussion on the variability of evapotranspiration (ET) through the various vegetation types was supported by a comparison between the respective crop coefficients and those available in the literature corresponding to the LCT, which has shown the appropriateness of METRIC estimates of ET. METRIC products derived from images of May and June – NDVI, surface temperature, net radiation, soil heat flux, sensible heat flux, and ET – were used to characterize the LCTs, through application of principal component analysis. Three principal components explained the variance of observed variables and their varimax rotated loadings allowed a good explanation of the behaviour of the explanatory variables in association with the LCTs. Information gained contributes to improve the characterization of the study area and may further support conservation and management of these mountain landscapes.  相似文献   
18.
Abstract

The annual water balance for 39 grid cells covering the savannah woodland region of Sudan (10–16°N; 21–36°E) was determined and regional maps produced. Long-term (1961–1990) mean monthly climate data, National Forest Inventory data and Harmonized World Soil Database data for arenosols and vertisols, the two dominant soil types in the region, were used. Model validation was performed using daily data from a site in one of the grid cells and inter-annual (1961–1990) variation examined for another grid cell. Rainfall varied from 147 to 732 mm and only exceeded evapotranspiration for 18 of the grid cells, resulting in a small increase in soil moisture and runoff. Evapotranspiration accounted for, on average, 96% of rainfall and there was little difference between soil types. Drainage only occurred from AR soils and for four of the grid cells. Runoff varied from 0 to 89 mm for arenosols and from 0 to 109 mm for vertisols. The study provided useful insights into the spatial variability in water balance components across the region.
Editor D. Koutsoyiannis; Associate editor D. Gerten  相似文献   
19.
Increasing river temperatures are a threat to cold water species including ecologically and economically important freshwater fish, such as Atlantic salmon. In 2018, ca. 70% of Scottish rivers experienced temperatures which cause thermal stress in juvenile salmon, a situation expected to become increasingly common under climate change. Management of riparian woodlands is proven to protect cold water habitats. However, creation of new riparian woodlands can be costly and logistically challenging. It is therefore important that planting can be prioritized to areas where it is most needed and can be most effective in reducing river temperatures. The effects of riparian woodland on channel shading depend on complex interactions between channel width, orientation, aspect, gradient, tree height and solar geometry. Subsequent effects on river temperature are influenced by water volume and residence time. This study developed a deterministic river temperature model, driven by energy gains from solar radiation that are modified by water volume and residence time. The resulting output is a planting prioritization metric that compares potential warming between scenarios with and without riparian woodland. The prioritization metric has a reach scale spatial resolution, but can be mapped at large spatial scales using information obtained from a digital river network. The results indicate that water volume and residence time, as represented by river order, are a dominant control on the effectiveness of riparian woodland in reducing river temperature. Ignoring these effects could result in a sub-optimal prioritization process and inappropriate resource allocation. Within river order, effectiveness of riparian shading depends on interactions between channel and landscape characteristics. Given the complexity and interacting nature of controls, the use of simple universal planting criteria is not appropriate. Instead, managers should be provided with maps that translate complex models into readily useable tools to prioritize riparian tree planting to mitigate the impacts of high river temperatures.  相似文献   
20.
Elm (Ulmus pumila), widely distributed in the north temperate zone, contributes to a special savanna-like woodland in typical grassland region in the northeastern China. This woodland performs a variety of ecological functions and environmental significance, such as decreasing soil erosion, stabilizing sand dunes, preserving species diversity. However, in the last approximate 30 years, the species composition, productivity and distribution area of elm woodland has decreased severely. A series of studies have been carried out to find out whether the climate changes or human disturbances caused the degradation of elm woodland and how these factors affected elm woodland. In this study, undisturbed, plowing and grazing elm woodland were investigated in 1983 and 2011 by using Point-Centered Quarter method. The relationship between vegetation changes and environmental factors was analyzed by Bray-Curtis ordination. The results show that in 2011, species diversity and understory productivity of undisturbed elm woodland decrease slightly compared to those of undisturbed elm woodland in 1983. However, nearly 60% of the species is lost in the plowing and grazing elm woodland relative to the species undisturbed elm woodland in 1983. Interestingly, plowing stimulates the growth of elm and certain understory species through furrowing soil and accelerating soil nutrient turnover rate. Grazing disturbance not only leads to species loss and productivity decrease, but also induces changes in elm growth (small, short and twisted). The mean age of the elm was 29 ± 2 yr in undisturbed and plowing elm woodland, while only 15 yr in the grazing elm woodland. The results of Bray-Curtis ordination analysis show that all sample stands clustered to three groups: Group I including the undisturbed sample stands of 83UE (undisturbed elm woodland in 1983) and 11UE (undisturbed elm woodland in 2011); Group II including sample stands of PE (elm woodland disturbed by plowing); Group III including samples stands of GE (elm woodland disturbed by grazing). The results indicate that the long time disturbance of the plowing and grazing have converted elm woodland to different community types. Climate change is not the primary reason causing the degradation of elm woodland, but plowing and grazing disturbance. Both plowing and grazing decrease the vegetation composition and species diversity. Grazing further decreases vegetation productivity and inhibits the growth of elm tree. Therefore, we suggest that reasonable plowing and exclusive grazing would be favorable for future regeneration of degraded elm woodland.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号