首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   68篇
  国内免费   181篇
地球物理   25篇
地质学   548篇
海洋学   6篇
综合类   8篇
自然地理   21篇
  2024年   1篇
  2023年   6篇
  2022年   12篇
  2021年   19篇
  2020年   14篇
  2019年   15篇
  2018年   11篇
  2017年   22篇
  2016年   18篇
  2015年   14篇
  2014年   24篇
  2013年   32篇
  2012年   29篇
  2011年   15篇
  2010年   16篇
  2009年   23篇
  2008年   23篇
  2007年   22篇
  2006年   35篇
  2005年   16篇
  2004年   27篇
  2003年   17篇
  2002年   23篇
  2001年   18篇
  2000年   19篇
  1999年   22篇
  1998年   19篇
  1997年   15篇
  1996年   17篇
  1995年   17篇
  1994年   9篇
  1993年   7篇
  1992年   8篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1985年   1篇
排序方式: 共有608条查询结果,搜索用时 31 毫秒
301.
Under the flatlands east of the Andes, the crustal basement is exposed in a few places, composed mainly of the Mitú migmatitic complex and the Parguaza granite, whose ages range between 1.78 and 1.45 Ga. Extensive outcrops of high-grade metamorphic rocks are found in several places. Two metamorphisms are dated between 1.2–1.1 and 1.0–0.9 Ga. They are considered blocks that formed during the Grenville orogeny and have Sm–Nd TDM model ages of 1.87–1.47. The Andaquí terrane is formed mainly by the Garzón Massif, composed of granulites, migmatites, and granites, and the metamorphic rocks of the Sierra de la Macarena, which are covered by undeformed Cambrian sediments. It is believed that after the Grenville orogeny, this unit remained attached to the Amazonic Craton. All the other areas grouped in the Chibcha terrane, though they formed during the Grenville orogeny, are believed to have remained either as part of another continental block or dispersed islands to be amalgamated to the Amazonic Craton during the Lower Paleozoic orogeny, which in the Quetame Massif is dated between the Silurian and Devonian and is named the Quetame orogenic event.  相似文献   
302.
The Precambrian geology of west-central Madagascar is reviewed and re-interpreted in light of new field observations, Landsat Thematic Mapper image analysis, and U–Pb geochronology. The bedrock of the area consists of: (1) late Archean (to Paleoproterozoic) migmatite gneiss and schist; (2) Mesoproterozoic stratified rocks (Itremo, Amborompotsy, and Malakialina Groups) perhaps deposited unconformably on the older metamorphic rocks (1, above); (3) Proterozoic ( 1000 Ma–720 Ma) plutonic rocks emplaced into both units above (1 and 2), and; (4) latest Neoproterozoic to middle Cambrian ( 570–520 Ma) granitoids emplaced as regionally discordant and weakly foliated plutons throughout the regions.

The effects of Neoproterozoic orogenic processes are widespread throughout the region and our observations and isotopic measurements provide important constraints on the tectonic history of the region: (i) Archean gneisses and Mesoproterozoic stratified rocks are the crystalline basement and platformal sedimentary cover, respectively, of a continental fragment of undetermined tectonic affinity (East or West Gondwanan, or neither). (ii) This continental fragment (both basement and cover) was extensively invaded by subduction-related plutons in the period from  1000 Ma to  720 Ma that were emplaced prior to the onset of regional metamorphism and deformation. (iii) Continental collision related to Gondwana's amalgamation began after  720 Ma and before  570 Ma. Collision related deformation and metamorphism continued throughout the rest of the Neoproterozoic with thermal effects that lasted until  520 Ma. The oldest structures produced during continental collision were km-scale fold- and thrust-nappes with east or southeast-directed vergence (present-day direction). They resulted in the inversion and repetition of Archean and Proterozoic rocks throughout the region. During this early phase of convergence warm rocks were thrust over cool rocks thereby producing the present distribution of regional metamorphic isograds. The vergence of the nappes and the distribution of metamorphic rocks are consistent with their formation within a zone of west or northwest-dipping continental convergence (present-day direction). (iv) Later upright folding of the nappes (and related folds and thrusts) produced km-scale interference fold patterns. The geometry and orientation of these younger upright folds is consistent with E–W horizontal shortening (present-day direction) within a sinistral transpressive regime. We relate this final phase of deformation to motion along the Ranotsara and related shear zones of south Madagascar, and to the initial phases of lower crustal exhumation and extensional tectonics within greater Gondwana.  相似文献   

303.
DEFORMATIONAL AND METAMORPHIC HISTORY OF THE CENTRAL LONGMEN MOUNTAINS, SICHUAN CHINA1 ArneDC ,WorleyBA ,WilsonCJL ,etal.Differentialexhumationinresponsetoepisodicthrustingalongtheeasternmar ginoftheTibetanPlateau[J] .Tectonophysics,1997,2 80 :2 39~ 2 56 . 2 ChenSF ,WilsonCJL ,WorleyBA .TectonictransitionfromtheSongpan GarzeFoldBelttotheSichuanBasin,south westernChina[J] .BasinResearch ,1995,7:2 35~ 2 53. 3 ChenSF ,WilsonCJL .Emplaceme…  相似文献   
304.
The carbonate-hosted Kabwe Pb–Zn deposit, Central Zambia, has produced at least 2.6 Mt of Zn and Pb metal as well as minor amounts of V, Cd, Ag and Cu. The deposit consists of four main epigenetic, pipe-like orebodies, structurally controlled along NE–SW faults. Sphalerite, galena, pyrite, minor chalcopyrite, and accessory Ge-sulphides of briartite and renierite constitute the primary ore mineral assemblage. Cores of massive sulphide orebodies are surrounded by oxide zones of silicate ore (willemite) and mineralized jasperoid that consists largely of quartz, willemite, cerussite, smithsonite, goethite and hematite, as well as numerous other secondary minerals, including vanadates, phosphates and carbonates of Zn, Pb, V and Cu.Galena, sphalerite and pyrite from the Pb–Zn rich massive orebodies have homogeneous, negative sulphur isotope ratios with mean δ34SCDT permil (‰) values of − 17.75 ± 0.28 (1σ), − 16.54 ± 0.0.27 and − 15.82 ± 0.25, respectively. The Zn-rich and Pb-poor No. 2 orebody shows slightly heavier ratios of − 11.70 ± 0.5‰ δ34S for sphalerite and of − 11.91 ± 0.71‰ δ34S for pyrite. The negative sulphur isotope ratios are considered to be typical of sedimentary sulphides produced through bacterial reduction of seawater sulphate and suggest a sedimentary source for the sulphur.Carbon and oxygen isotope ratios of the host dolomite have mean δ13CPDB and δ18OSMOW values of 2.89‰ and 27.68‰, respectively, which are typical of marine carbonates. The oxygen isotope ratios of dolomite correlate negatively to the SiO2 content introduced during silicification of the host dolomite. The depletion in 18O in dolomite indicates high temperature fluid/rock interaction, involving a silica- and 18O-rich hydrothermal solution.Two types of secondary fluid inclusions in dolomite, both of which are thought to be related to ore deposition, indicate temperatures of ore deposition in the range of 257 to 385 and 98 to 178 °C, respectively. The high temperature fluid inclusions contain liquid + vapour + solid phases and have salinities of 15 to 31 eq. wt.% NaCl, whereas the low temperature inclusions consist of liquid + vapour with a salinity of 11.5 eq. wt.% NaCl.Fluid transport may have been caused by tectonic movements associated with the early stages of the Pan-African Lufilian orogeny, whereas ore deposition within favourable structures occurred due to changes in pressure, temperature and pH in the ore solution during metasomatic replacement of the host dolomite. The termination of the Kabwe orebodies at the Mine Club fault zone and observed deformation textures of the ore sulphides as well as analysis of joint structures in the host dolomite, indicate that ore emplacement occurred prior to the latest deformation phase of the Neoproterozoic Lufilian orogeny.  相似文献   
305.
内蒙古乌努格吐山斑岩铜钼矿床流体包裹体研究   总被引:9,自引:28,他引:9  
内蒙古乌努格吐山(简称乌山)斑岩铜钼矿床位于得尔布干深断裂北侧的额尔古纳地体。作为兴蒙造山带的一部分,额尔古纳地体经历了古生代俯冲增生、早中生代碰撞造山和晚中生代—新生代期间的与太平洋板块俯冲有关的碰撞后构造演化。乌山矿床形成于侏罗纪,是陆-陆碰撞体制斑岩矿床的典型实例,其地质地球化学特征有助于理解碰撞环境的斑岩矿床的成因,因此本文报道该矿床流体包裹体显微测温学、激光拉曼光谱和扫描电镜/能谱研究结果。乌山矿床流体成矿过程包括早、中、晚3个阶段,分别以石英-钾长石化、石英-绢云母-多金属硫化物化和伊利石-石英-碳酸盐化为特征。石英中可见水溶液包裹体、含子晶和含 CO_2三相流体包裹体,但晚阶段石英中缺乏后两类包裹体。早阶段流体包裹体均一温度>510℃,盐度最高达75.8 wt%Nacl eqv,包裹体的子晶矿物有石盐、黄铜矿以及指示氧化条件的赤铁矿,气相成分富含 CO_2,液相成分以水为主,且多含 CO_3~(2-)。矿化主要发生在中阶段,可分为早期的钼矿化阶段和晚期的铜矿化阶段,其成矿温度分别为340℃~510℃和240℃~340℃。该阶段流体盐度介于6.3~52.0 wt%NaCl eqv。中阶段包裹体含石盐和黄铜矿子矿物,富气相、富液相与含子晶包裹体共存,且具有相近的均一温度,而盐度相差悬殊,指示流体发生沸腾,成矿物质快速沉淀。晚阶段流体温度降低至100℃~240℃,盐度则低于12.4 wt%NaCl eqv。总之,早阶段成矿流体来自岩浆,以高温、高盐度、高氧逸度、富 CO_2为特征;中阶段流体发生沸腾,导致 CO_2逸失、氧逸度降低、成矿物质快速沉淀;晚阶段流体以低温、低盐度、无子晶、贫 CO_2为特征,可能属大气降水热液。  相似文献   
306.
兴蒙造山带属于中亚造山带的东段,关于其演化过程存在两种主要观点:一种观点认为它是由古亚洲洋经历整个古生代的连续俯冲-碰撞过程后在早三叠世形成;另一种观点则认为古亚洲洋在晚泥盆世之前就通过俯冲-碰撞过程闭合,形成早-中古生代造山带,随后在石炭-二叠纪又经历了从陆内伸展到再次闭合的过程,并形成陆内造山带。蒙古国东南部扎门乌德地区出露各类古生代沉积岩和岩浆岩,可以为解决上述争议提供典型研究实例。本文通过沉积学、年代学和地球化学等多种手段综合研究,取得以下研究成果:(1)根据年代学和岩性特征,在该地区识别出三类古生代岩石组合,第一类是以黑云母二长花岗岩为代表的中志留世侵入岩,第二类是中泥盆世大套的粗碎屑岩-火山岩沉积旋回,第三类是不整合地沉积于早期造山带之上的二叠纪巨厚火山-沉积岩系。这三类岩石组合分别属于俯冲阶段的大陆边缘岛弧带岩浆岩、碰撞造山后期的上叠盆地以及叠加在早期造山带岩石圈之上的晚古生代陆内伸展时期的裂谷盆地的沉积。(2)利用研究区所有古生代碎屑锆石和岩浆岩全岩资料,揭示了该地区古生代时期地壳厚度变化趋势如下:500~425Ma的俯冲-碰撞过程造成地壳加厚;425~375Ma的碰撞造山后伸展过程使地壳变薄;375~350Ma地壳再次加厚,可能与造山带物质堆叠有关;350~275Ma地壳再次减薄,对应于广泛而强烈的晚石炭世-早二叠世火山岩,证明此时期岩浆活动的构造背景是区域伸展而不是挤压作用。(3)根据研究区出现的三类岩石组合特点,结合研究区以南的艾力格庙地区已有的研究成果,可以划分出五个早-中古生代造山带构造单元和两个叠加其上的晚古生代陆内造山带构造单元,揭示蒙古国扎门乌德地区经历了早-中古生代加积造山带和晚古生代陆内造山带等两个构造演化过程。本文研究为认识兴蒙造山带的两阶段构造发展提供了新资料。  相似文献   
307.
The Yubei-Tangbei area in the southern Tarim Basin is one of the best-preserved Early Paleozoic northeast-southwest trending fold-and-thrust belts within this basin.This area is crucial for the exploration of primary hydrocarbon reservoirs in northwestern China.In this study,we constructed the structural geometric morphology of the Yubei-Tangbei area using geophysical logs,drilling,and recent two-and three-dimensional(2-D and 3-D)seismic data.The Early Paleozoic fault-propagation folds,the Tangnan triangle zone,fault-detachment folds,and trishear fault-propagation folds developed with the detachment of the Middle Cambrian gypsum-salt layer.According to a detailed chronostratigraphic framework,the growth strata in the Upper Ordovician-Lower Silurian layer formed by onlapping the back limb of the asymmetric fault-propagation folds,which therefore defines the timing of deformations.The changes in kink band hinges and amplitudes in the Permian-Carboniferous and Cenozoic folding strata suggest that the evolution of the fold-and-thrust belts followed a sequential evolution process rather than a simultaneous one.Above the pre-existing Precambrian basement structure,the Yubei-Tangbei fold-and-thrust belts can be divided into four tectonic evolution stages:Late Cambrian,Late Ordovician to Early Carboniferous,Carboniferous to Permian,and Cenozoic.The northwestern-verging Cherchen Fault is part of the piedmont fold-and-thrust system of the southern Tarim foreland basin.We interpreted its strata as a breakthrough trishear fault-propagation fold that developed in three phases:Mid-Late Ordovician,Silurian to Middle Devonian,and Triassic to present.These tectonic events are responses of the Altyn-Tagh and Kunlun collisional orogenic belts and the Indian-Eurasian collision.The inherited deformation and structural modification in the southern Tarim Basin may be an indicator of the growth and evolution of peripheral orogens.  相似文献   
308.
The discovery of the Gouap banded iron formations(BIFs)-hosted iron mineralization in the northwestern of the Nyong Group(Ntem Complex)in southwestern Cameroon provides unique insights into the geology of this region.In this contribution,we firstly report detailed study of geochemistry,isotopic and geochronology of well preserved samples of the Gouap BIFs collected from diamond drillcores.The Gouap BIFs consist mainly of amphibole BIFs and amphibole-pyrite BIFs characterized by dominant Fe2O3+SiO2contents and variable contents of CaO,MgO and SO3,consistent with the presence of amphibole,chlorite,epidote and pyrite,formed during amphibolite facies metamorphism and overprinted hydrothermal event.The amphibole–pyrite BIFs are typically enriched in trace and rare earth elements(REE)compared to the amphibole BIFs,suggesting the influence of detrital materials as well as secondary hydrothermal alteration.The Post Archean Australian Shale(PAAS)-normalized REE–Y profiles of the Gouap BIFs display positive La,Eu anomalies,weak negative Ce anomalies,indicating a mixture of low-temperature hydrothermal fluids and relatively oxic conditions probably under relative shallow seawater.We present here the first isotopic data of BIFs within the Ntem Complex.Theδ30SiNBS28values of the quartz from the Gouap BIFs vary from-1.5‰to-0.3‰and from-0.8‰to-0.9‰for the amphibole BIFs and amphibole–pyrite BIFs,respectively.The quartz hasδ18OV-SMOW values of 6.8‰–9.5‰(amphibole BIFs)and 9.2‰–10.6‰(amphibole–pyrite BIFs).The magnetite from the Gouap BIFs showsδ18O values ranging from-3.5‰to-1.8‰and from-3‰to-1.7‰for the amphibole BIFs and amphibole–pyrite BIFs,respectively.Moreover,the pyrite grains in the amphibole–pyrite BIFs displayδ34S values of 1.1‰–1.8‰.All isotopic data of the Gouap BIFs confirm that they might have precipitated from low-temperature hydrothermal fluids with detrital input distant from the volcanic activity.According to their geochemical and isotopic characteristics,we propose that the Gouap BIFs belong to the Superior type.In situ U–Pb zircon dating of BIFs was conducted to assess the BIF depositional age based on strong evidence of zircon in thin section.The Gouap BIFs were probably deposited at 2422±50 Ma in a region where sediments extended from continental shelf to deep-water environments along craton margins like the Caue Formation of the Minas Supergroup,Brazil.The studied BIFs have experienced regional hydrothermal activity and metamorphism at 2089±8.3 Ma during the Eburnean–Transamazonian orogeny.These findings suggest a physical continuity between the protocratonic masses of both Sao Francisco and Congo continents in the Rhyacian Period.  相似文献   
309.
The amalgamation of Pangea formed the contorted Variscan-Alleghanian orogen,suturing Gondwana and Laurussia during the Carboniferous.From all swirls of this orogen,a double curve in Iberia stands out,the coupled Cantabrian Orocline and Central Iberian curve.The Cantabrian Orocline formed at ca.315–290 Ma subsequent to the Variscan orogeny.The formation mechanism of the Cantabrian Orocline is disputed,the most commonly proposed mechanisms include either(1)that south-westernmost Iberia would be an Avalonian(Laurussian)indenter or(2)that the stress field changed,buckling the orogen.In contrast,the geometry and kinematics of the Central Iberian curve are largely unknown.Whereas some authors defend both curvatures are genetically linked,others support they are distinct and formed at different times.Such uncertainty adds an extra layer of complexity to our understanding of the final stages of Pangea’s amalgamation.To solve these issues,we study the late Carboniferous–early Permian vertical-axis rotations of SW Iberia with paleomagnetism.Our results show up to 70counterclockwise vertical-axis rotations during late Carboniferous times,concurring with the anticipated kinematics if SW Iberia was part of the southern limb of the Cantabrian Orocline.Our results do not allow the necessary penecontemporaneous clockwise rotations in Central Iberia to support a concomitant formation of both Cantabrian and Central Iberian curvature.The coherent rotation of both Gondwanan and Avalonian pieces of SW Iberia discards the Laurussian indenter hypothesis as a formation mechanism of the Cantabrian Orocline and confirms the Greater Cantabrian Orocline hypothesis.The Greater Cantabrian Orocline likely formed as a consequence of a change in the stress field during the late Carboniferous and extended beyond the Rheic Ocean suture affecting the margins of both Laurussia and Gondwana.  相似文献   
310.
北非地区为世界上油气富集地区之一,区内油气分布表现出极大的不均匀性,以往研究对这一油气差异性富集控制因素的探讨较为薄弱。本研究重点从中生代期间发育的多个区域沉积中心的演化和形成机制的角度,探讨这一科学问题。对已有的基础地质和油气勘探资料的综合再分析表明,北非地区冈瓦纳大陆北缘发育维德迈尔—佩拉杰、苏尔特、东地中海三个彼此孤立存在的中生代沉积中心,这些沉积中心在空间上处于阿拉拉隆起、苏尔特隆起、黎凡特隆起三个海西运动中形成的NE向古隆起之上,具有“古隆起塌陷反转”的形成机理;沉积中心均靠近新特提斯洋边缘,总体呈现受海西运动形成的古隆起和新特提斯洋开启背景下的伸展作用联合控制。三个中生代沉积中心为中生代优质烃源岩发育区和油气富集区;受海西期塑造的古构造、海西构造剥蚀对砂岩储层的控制以及中生代烃源岩发育等有利因素所控,这些塌陷形成的中生代沉积中心及围区成为最为重要的油气富集区带。中生代盆地的这一形成过程为该区油气差异富集的重要控制因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号