首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   500篇
  免费   64篇
  国内免费   112篇
测绘学   2篇
大气科学   34篇
地球物理   109篇
地质学   65篇
海洋学   397篇
天文学   16篇
综合类   28篇
自然地理   25篇
  2023年   2篇
  2022年   6篇
  2021年   14篇
  2020年   14篇
  2019年   14篇
  2018年   9篇
  2017年   17篇
  2016年   23篇
  2015年   20篇
  2014年   30篇
  2013年   40篇
  2012年   11篇
  2011年   40篇
  2010年   27篇
  2009年   40篇
  2008年   42篇
  2007年   36篇
  2006年   33篇
  2005年   33篇
  2004年   27篇
  2003年   22篇
  2002年   31篇
  2001年   18篇
  2000年   21篇
  1999年   20篇
  1998年   15篇
  1997年   16篇
  1996年   12篇
  1995年   10篇
  1994年   13篇
  1993年   7篇
  1992年   5篇
  1991年   1篇
  1989年   5篇
  1986年   1篇
  1978年   1篇
排序方式: 共有676条查询结果,搜索用时 0 毫秒
11.
Primary productivity in the East China Sea and its adjacent area was measured by the13C tracer method during winter, summer and fall in 1993 and 1994. The depth-integrated primary productivity in the Kuroshio Current ranged from 220 to 350 mgC m−2d−1, and showed little seasonal variability. High primary productivity (above 570 mgC m−2d−1) was measured at the center of the continental shelf throughout the observation period. The productivity at the station nearest to the Changjiang estuary exhibited a distinctive seasonal change from 68 to 1,500 mgC m−2d−1. Depth-integrated primary productivity was 2.7 times higher in the shelf area than the rates at the Kuroshio Current. High chlorophyll-a specific productivity (mgC mgChl.-a−2d−1) throughout the euphotic zone was mainly found in the shelf area rather than off-shelf area, probably due to higher nutrient availability and higher activity of phytoplankton at the subsurface layer in the shelf area.  相似文献   
12.
上海淤泥质潮滩潮锋作用及其形成机制初步探讨*   总被引:7,自引:1,他引:7  
徐元  王宝灿 《地理研究》1994,13(3):60-68
本文具体讨论了上海淤泥质潮滩的潮锋作用过程,定性给出了潮锋的形成机制,认为潮锋作用及其水体高含沙量现象的本质在于“潮锋带水体水流加速效应”,即,由于潮滩坡面变化平缓的特殊性,涨潮水体前锋沿程存在着一持续时间可达数十分钟的水流加速过程.最后,本文初步探讨了潮锋作用在滩面塑造过程中的地位,并重新定义了潮锋作用的内容.  相似文献   
13.
南极绕极流区中尺度涡动动能年际变化和转换机制   总被引:1,自引:0,他引:1       下载免费PDF全文
采用多种资料研究南大洋南极绕极流(Antarctic Circumpolar Current,ACC)区中尺度涡的年际变化规律及机制.通过分析网格化融合卫星海洋资料AVISO(Archiving,Validation and Interpretation of Satellites Oceanographic DATA...  相似文献   
14.
Solander Basin is characterized by subduction initiation at the Pacific‐Australia plate boundary, where high biological productivity is found at the northern edge of the Antarctic Circumpolar Current. Sedimentary architecture results from tectonic influences on accommodation space, sediment supply and ocean currents (via physiography); and climate influence on ocean currents and biological productivity. We present the first seismic‐stratigraphic analysis of Solander Basin based on high‐fold seismic‐reflection data (voyage MGL1803, SISIE). Solander Trough physiography formed by Eocene rifting, but basinal strata are mostly younger than ca. 17 Ma, when we infer Puysegur Ridge formed and sheltered Solander Basin from bottom currents, and mountain growth onshore increased sediment supply. Initial inversion on the Tauru Fault started at ca. 15 Ma, but reverse faulting from 12 to ca. 8 Ma on both the Tauru and Parara Faults was likely associated with reorganization and formation of the subduction thrust. The new seabed topography forced sediment pathways to become channelized at low points or antecedent gorges. Since 5 Ma, southern Puysegur Ridge and Fiordland mountains spread out towards the east and Solander Anticline grew in response to ongoing subduction and growth of a slab. Solander Basin had high sedimentation rates because (1) it is sheltered from bottom currents by Puysegur Ridge; and (2) it has a mountainous land area that supplies sediment to its northern end. Sedimentary architecture is asymmetric due to the Subtropical Front, which moves pelagic and hemi‐pelagic sediment, including dilute parts of gravity flows, eastward and accretes contourites to the shelf south of Stewart Island. Levees, scours, drifts and ridges of folded sediment characterize western Solander Basin, whereas hemi‐pelagic drape and secondary gravity flows are found east of the meandering axial Solander Channel. The high‐resolution record of climate and tectonics that Solander Basin contains may yield excellent sites for future scientific ocean drilling.  相似文献   
15.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   
16.
Zooplankton sampling at Station 18 off Concepción (36°30′S and 73°07′W), on an average frequency of 30 days (August 2002 to December 2005), allowed the assessment of seasonal and inter-annual variation in zooplankton biomass, its C and N content, and the community structure in relation to upwelling variability. Copepods contributed 79% of the total zooplankton community and were mostly represented by Paracalanus parvus, Oithona similis, Oithona nana, Calanus chilensis, and Rhincalanus nasutus. Other copepod species, euphausiids (mainly Euphausia mucronata), gelatinous zooplankton, and crustacean larvae comprised the rest of the community. Changes in the depth of the upper boundary of the oxygen minimum zone indicated the strongly seasonal upwelling pattern. The bulk of zooplankton biomass and total copepod abundance were both strongly and positively associated with a shallow (<20 m) oxygen minimum zone; these values increased in spring/summer, when upwelling prevailed. Gelatinous zooplankton showed positive abundance anomalies in the spring and winter, whereas euphausiids had no seasonal pattern and a positive anomaly in the fall. The C content and the C/N ratio of zooplankton biomass significantly increased during the spring when chlorophyll-a was high (>5 mg m−3). No major changes in zooplankton biomass and species were found from one year to the next. We concluded that upwelling is the key process modulating variability in zooplankton biomass and its community structure in this zone. The spring/summer increase in zooplankton may be largely the result of the aggregation of dominant copepods within the upwelling region; these may reproduce throughout the year, increasing their C content and C/N ratios given high diatom concentrations.  相似文献   
17.
This study focuses on the comparison of oceanic and coastal cold-core eddies with inner-shelf and East Australian Current (EAC) waters at the time of the spring bloom (October 2008). The surface water was biologically characterised by the phytoplankton biomass, composition, photo-physiology, carbon fixation and by nutrient-enrichment experiments. Marked differences in phytoplankton biomass and composition were observed. Contrasted biomarker composition suggests that biomarkers could be used to track water masses in this area. Divinyl chlorophyll a, a biomarker for tropical Prochlorophytes, was found only in the EAC. Zeaxanthin a biomarker for Cyanophytes, was found only within the oceanic eddy and in the EAC, whereas chlorophyll b (Chlorophytes) was only present in the coastal eddy and at the front between the inner-shelf and EAC waters.This study showed that cold-core eddies can affect phytoplankton, biomass, biodiversity and productivity. Inside the oceanic eddy, greater phytoplankton biomass and a more complex phytoplankton community were observed relative to adjacent water masses (including the EAC). In fact, phytoplankton communities inside the oceanic eddy more closely resembled the community observed in the inner-shelf waters. At a light level close to half-saturation, phytoplankton carbon fixation (gC d−1) in the oceanic eddy was 13-times greater than at the frontal zone between the eddy and the EAC and 3-times greater than in the inner-shelf water. Nutrient-enrichment experiments demonstrated that nitrogen was the major macronutrient limiting phytoplankton growth in water masses associated with the oceanic eddy. Although the effective quantum yield values demonstrate healthy phytoplankton communities, the phytoplankton community bloomed and shifted in response to nitrogen enrichments inside the oceanic eddy and in the frontal zone between this eddy and the EAC. An effect of Si enrichment was only observed at the frontal zone between the eddy and the EAC. No response to nutrient enrichment was observed in the inner-shelf water where ambient NOx, Si and PO4 concentrations were up to 14, 4 and 3-times greater than in the EAC and oceanic eddy. Although results from the nutrient-enrichment experiments suggest that nutrients can affect biomass and the composition of the phytoplankton community, the comparison of all sites sampled showed no direct relationship between phytoplankton biomass, nutrients and the depth of the mixed layer. This is probably due to the different timeframe between the rapidly changing physical and chemical oceanography in the separation zone of the EAC.  相似文献   
18.
Ocean current forecasting is still in explorative stage of study. In the study, we face some problems that have not been met before. The solving of these problems has become fundamental premise for realizing the ocean current forecasting. In the present paper are discussed in depth the physical essence for such basic problems as the predictability of ocean current, the predictable currents, the dynamical basis for studying respectively the tidal current and circulation, the necessity of boundary model, the models on regions with different scales and their link. The foundations and plans to solve the problems are demonstrated. Finally a set of operational numerical forecasting system for ocean current is proposed.  相似文献   
19.
The seasonal circulation in the southeastern Huanghai Sea has been studied with hydrographic data,which were observed in February and June 1994 and bimonthly during 1970-1990,and numerical model results.Horiwntal distributions of temperature and salinity in 1994 are quite different due to strong tidal mixing so that we need a analysis to see the real distributions of water masses.The mixing ratio analysis with the data of 1970-1990 shows the connection of the waters in the west coasts of Kotea Peninsula with warm and saline waters from the south in summer,which means northward inflows along the west coasts of Korea Peninsula in summer.With this flow,the seasonal circulations,which are deduced from the seasonal change of water mass distributions in the lower layer,are warm inflows in winter and mld outflows in summer in the central Huanghai Sea,and cold outflows in winter and warm inflows in summer along the west coasts of Korea Peninsula.The seasonally changed inflows might be the Huanghai Sea Warm Current.The monsoon winds can drive such circulations.However,summer monsoon winds are weak and irregular.As one of other possible dynamics,the variation of Kuroshio transport is numerically studied with allowing sea level fluctuations.Although it should be studied more,it possibly drives the summer circulations.The real circulations seem to be driven by both of them.  相似文献   
20.
Using hydrographic data and moored current meter records and the ADCP observed current data during May–June 1996, a modified inverse method is applied to calculate the Kuroshio east of Taiwan and in the East China Sea and the currents east of Ryukyu Islands. There are three branches of the Kuroshio east of Taiwan. The Kuroshio in the East China Sea comes from the main (first) and second branches of the Kuroshio east of Taiwan. The easternmost (third) branch of the Kuroshio flows northeastward to the region east of Ryukyu Islands. The net northward volume transports of the Kuroshio through Section K2 southeast of Taiwan and Section PN in the East China Sea are 44.4×106 and 27.2×106 m3s−1, respectively. The western boundary current east of Ryukyu Islands comes from the easternmost branch of the Kuroshio east of Taiwan and an anticyclonic recirculating gyre more east, making volume transports of 10 to 15×106 m3s−1. At about 21°N, 127°E southeast of Taiwan, there is a cold eddy which causes branching of the Kuroshio there.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号